Tecnologico De Estudiso Superiores De Ecatepec

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC

Misión:


“Ofrecer educación superior integral y de calidad a través de programas de docencia, investigación y extensión un Modelo Académico Educativo basado en valores y en desarrollo de competencias programas acreditados, procesos y egresados certificados, para satisfacer las necesidades de los sectores, con el objeto de contribuir al desarrollo de la región, del estado y del país”.

Visión:

“El Tecnológico de Estudios Superiores de Ecatepec se concibe como la institución de educación superior de mayo nivel vanguardista, con prestigio nacional e internacional, competitiva en docencia, investigación, extensión y funciones de apoyo, con resultados de excelencia para los sectores que atiende. Nuestros egresados se forman con valores y competencias, obteniendo así calidad y competitividad que les permitan incorporarse al mundo laboral para beneficio propio, de la organización y de la sociedad, pero sobre todo, contribuyendo eficientemente en la solución de problemas, la sustentabilidad y los avances tecnológicos.”


Informate más acerca de la institucion y de lo que puede ofrecerte en:
http://www.tese.edu.mx

TESE

TESE
Logo del Tecnologico De Estudios Superiores De Ecatepec

Carrera de Sistemas


Ingenieria en Sistemas Computacionales ISC

Objetivos:


Formar profesionistas de manera integral con capacidad analítica, crítica, creativa y de liderazgo que aporten soluciones computacionales en las organizaciones, aplicando las tecnologías de la información y de las comunicaciones, comprometidos con su entorno.

Perfil del Egresado:

El egresado de la Ingeniería en Sistemas Computacionales tendrá los conocimientos teórico-prácticos necesarios para que de manera eficiente y responsable pueda analizar, diseñar, desarrollar e implantar software de base y de aplicación, sistemas operativos y proponer la óptima utilización de las diferentes estructuras de bases de datos. Será capaz de evaluar, instalar, administrar, operar y mantener redes y sistemas distribuidos, así como sistemas de transmisión de datos y equipo de comunicación digital.El egresado de esta carrera contará con habilidades técnicas y metodológicas de investigación que le permitan integrarse con facilidad en grupos interdisciplinarios de desarrollo tecnológico y empresarial. Tendrá una sólida formación profesional que de manera visionaria, ética e innovadora, ayude al fortalecimiento de la tecnología nacional, desarrollando un compromiso con la sociedad y la ecología.

Campo Laboral:

El Ingeniero en Sistemas Computacionales egresado del TESE, no sólo desempeña actividades donde el uso de las computadoras es indispensable, sino además puede participar en grupos de investigación y desarrollo en diversas disciplinas. Estará capacitado para ejercer su profesión en cualquier organización productiva de bienes y servicios, tanto del sector privado o público, o en forma independiente.Dada su especialidad, el Ingiero en Sistemas Computacionales estará en condiciones de ejercer en las áreas de administración, desarrollo y mantenimiento de sistemas, ocupar puestos directivos o ejecutivos en empresas del sector, y participar en docencia e investigación.

Conoce más acerca de ISC en:
http://portal.tese.edu.mx/tese2010/loader.aspx?n=W9DVO61VVB

viernes, 6 de julio de 2012

4.2 Medios No Guiados.

4.2 Medios No Guiados. Tanto la transmisión como la recepción de información se llevan a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario en la recepción la antena capta las ondas electromagnéticas del medio que la rodea. La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional. En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas. En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional. La transmisión de datos a través de medios no guiados, añade problemas adicionales provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo. La comunicación inalámbrica o sin cables es aquella en la que extremos de la comunicación (emisor/receptor) no se encuentran unidos por un medio de propagación físico, sino que se utiliza la modulación de ondas electromagnéticas a través del espacio. En este sentido, los dispositivos físicos sólo están presentes en los emisores y receptores de la señal, entre los cuales encontramos: antenas, computadoras portátiles, PDA, teléfonos móviles, etc. En general, la tecnología inalámbrica utiliza ondas de radiofrecuencia de baja potencia y una banda específica, de uso libre o privada para transmitir, entre dispositivos. Estas condiciones de libertad de utilización sin necesidad de licencia, ha propiciado que el número de equipos, especialmente computadoras, que utilizan las ondas para conectarse, a través de redes inalámbricas haya crecido notablemente. La tendencia a la movilidad y la ubicuidad hacen que cada vez sean más utilizados los sistemas inalámbricos, y el objetivo es ir evitando los cables en todo tipo de comunicación, no solo en el campo informático sino en televisión, telefonía, seguridad, domótica, etc. Un fenómeno social que ha adquirido gran importancia, en todo el mundo, como consecuencia del uso de la tecnología inalámbrica son las comunidades inalámbricas que buscan la difusión de redes alternativas a las comerciales. El mayor exponente de esas iniciativas en España es Red Libre. 4.2.1 Transmisión De Señales De Radio. La radiocomunicación es una forma de telecomunicación que se realiza a través de ondas de radio u ondas hertzianas, la que a su vez está caracterizada por el movimiento de los campos eléctricos y campos magnéticos. La comunicación vía radio se realiza a través del espectro radioeléctrico cuyas propiedades son diversas dependiendo de su bandas de frecuencia. Así tenemos bandas conocidas como baja frecuencia, media frecuencia, alta frecuencia, muy alta frecuencia, ultra alta frecuencia, etc. En cada una de ellas, el comportamiento de las ondas es diferente. La radiocomunicación es la tecnología que posibilita la transmisión de señales mediante la modulación(de su frecuencia o amplitud) de ondas electromagnéticas. Estas ondas no requieren un medio físico de transporte, por lo que pueden propagarse tanto a través del aire como del espacio vacío. Una onda de radio se origina cuando una partícula cargada (por ejemplo, un electrón) se excita a una frecuencia situada en la zona de radiofrecuencia (RF) del espectro electromagnético. Cuando la onda de radio actúa sobre un conductor eléctrico (la antena), induce en él un movimiento de la carga eléctrica (corriente eléctrica) que puede ser transformado en señales de audio u otro tipo de señales portadoras de información. El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 kHz y unos 300 GHz. El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un ciclo por segundo. Las ondas electromagnéticas de esta región del espectro, se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. 4.2.2 Microondas En El Espacio Libre. Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 GHz y 300 GHz (1 GHz = 10A9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y lmm. Las emisiones pueden ser de forma analógica o digitales pero han de estar en la línea visible. En un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud. Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario. 4.2.3 Satélite. Un satélite artificial es una nave espacial fabricada en la Tierra o en otro lugar del espacio y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas u objetos naturales del espacio, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial también no son los satélites artificiales los únicos en el planeta también existen satélites naturales el más cercano es la luna. Los satélites artificiales de comunicaciones son un medio muy apto para emitir señales de radio en zonas amplias o poco desarrolladas, ya que pueden utilizarse como enormes antenas suspendidas del cielo. Se suelen utilizar frecuencias elevadas en el rango de los GHz; además, la elevada direccionalidad de antenas utilizadas permite "alumbrar" zonas concretas de la Tierra. El primer satélite de comunicaciones, el Telstar 1, se puso en órbita en 1962. La primera transmisión de televisión vía satélite se llevó a cabo en 1964. 4.2.4 Infrarrojas. La radiación infrarroja, radiación térmica o radiación IR es un tipo de radiación electromagnética de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Consecuentemente, tiene menor frecuencia que la luz visible y mayor que las microondas. Su rango de longitudes de onda va desde unos 0,7 hasta los 100 micrómetros.1 La radiación infrarroja es emitida por cualquier cuerpo cuya temperatura sea mayor que 0 Kelvin, es decir, −273,15 grados Celsius (cero absoluto). Los infrarrojos son clasificados, de acuerdo a su longitud de onda, de este modo: • infrarrojo cercano (de 800 nm a 2500 nm) • infrarrojo medio (de 2.5 µm a 50 µm) • infrarrojo lejano (de 50 µm a 1000 µm) Los infrarrojos se utilizan en los equipos de visión nocturna cuando la cantidad de luz visible es insuficiente para ver los objetos. La radiación se recibe y después se refleja en una pantalla. Los objetos más calientes se convierten en los más luminosos. Un uso muy común es el que hacen los mandos a distancia (ó telecomandos) que generalmente utilizan los infrarrojos en vez de ondas de radio ya que no interfieren con otras señales como las señales de televisión. Los infrarrojos también se utilizan para comunicar a corta distancia los ordenadores con sus periféricos. Los aparatos que utilizan este tipo de comunicación cumplen generalmente un estándar publicado por Infrared Data Association. La luz utilizada en las fibras ópticas es generalmente de infrarrojos.

No hay comentarios:

Publicar un comentario