Tecnologico De Estudiso Superiores De Ecatepec

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC

Misión:


“Ofrecer educación superior integral y de calidad a través de programas de docencia, investigación y extensión un Modelo Académico Educativo basado en valores y en desarrollo de competencias programas acreditados, procesos y egresados certificados, para satisfacer las necesidades de los sectores, con el objeto de contribuir al desarrollo de la región, del estado y del país”.

Visión:

“El Tecnológico de Estudios Superiores de Ecatepec se concibe como la institución de educación superior de mayo nivel vanguardista, con prestigio nacional e internacional, competitiva en docencia, investigación, extensión y funciones de apoyo, con resultados de excelencia para los sectores que atiende. Nuestros egresados se forman con valores y competencias, obteniendo así calidad y competitividad que les permitan incorporarse al mundo laboral para beneficio propio, de la organización y de la sociedad, pero sobre todo, contribuyendo eficientemente en la solución de problemas, la sustentabilidad y los avances tecnológicos.”


Informate más acerca de la institucion y de lo que puede ofrecerte en:
http://www.tese.edu.mx

TESE

TESE
Logo del Tecnologico De Estudios Superiores De Ecatepec

Carrera de Sistemas


Ingenieria en Sistemas Computacionales ISC

Objetivos:


Formar profesionistas de manera integral con capacidad analítica, crítica, creativa y de liderazgo que aporten soluciones computacionales en las organizaciones, aplicando las tecnologías de la información y de las comunicaciones, comprometidos con su entorno.

Perfil del Egresado:

El egresado de la Ingeniería en Sistemas Computacionales tendrá los conocimientos teórico-prácticos necesarios para que de manera eficiente y responsable pueda analizar, diseñar, desarrollar e implantar software de base y de aplicación, sistemas operativos y proponer la óptima utilización de las diferentes estructuras de bases de datos. Será capaz de evaluar, instalar, administrar, operar y mantener redes y sistemas distribuidos, así como sistemas de transmisión de datos y equipo de comunicación digital.El egresado de esta carrera contará con habilidades técnicas y metodológicas de investigación que le permitan integrarse con facilidad en grupos interdisciplinarios de desarrollo tecnológico y empresarial. Tendrá una sólida formación profesional que de manera visionaria, ética e innovadora, ayude al fortalecimiento de la tecnología nacional, desarrollando un compromiso con la sociedad y la ecología.

Campo Laboral:

El Ingeniero en Sistemas Computacionales egresado del TESE, no sólo desempeña actividades donde el uso de las computadoras es indispensable, sino además puede participar en grupos de investigación y desarrollo en diversas disciplinas. Estará capacitado para ejercer su profesión en cualquier organización productiva de bienes y servicios, tanto del sector privado o público, o en forma independiente.Dada su especialidad, el Ingiero en Sistemas Computacionales estará en condiciones de ejercer en las áreas de administración, desarrollo y mantenimiento de sistemas, ocupar puestos directivos o ejecutivos en empresas del sector, y participar en docencia e investigación.

Conoce más acerca de ISC en:
http://portal.tese.edu.mx/tese2010/loader.aspx?n=W9DVO61VVB

viernes, 6 de julio de 2012

Aqui dejo los links para conocer mas sobre la materia:

objetivos, material de ayuda y bibliografia.

Y el temario para que lo vean.

Ambos estan en PDF, pensando en los que usan smartphones:

Temario: https://docs.google.com/file/d/0B8EPLqWTD1vkUTU3VlZvTmt2a2s/edit

Datos de la Asignatura:

https://docs.google.com/file/d/0B8EPLqWTD1vkWUhxNW5QSVZHZVk/edit

comenten¡¡¡¡¡

5.4 Impacto De Las Telecomunicaciones En Diversas Áreas.

5.4 Impacto De Las Telecomunicaciones En Diversas Áreas. La comunicación, es el proceso de transmisión y recepción de ideas, información y mensajes. En los últimos 150 años, y en especial en las dos últimas décadas, la reducción de los tiempos de transmisión de la información a distancia y de acceso a la información es uno de los retos esenciales de nuestra sociedad. 5.4.1 Educación. Las telecomunicaciones en la educación se enfocan básicamente a lo que es educación a distancia, todo lo que tenga que ver con lo que sea enseñanza a larga distancia, ya sea con el uso de: El Internet, mediante este medio se puede subir videos o conferencias para una mejor enseñanza, también existen clases en línea y tutores en línea. Este medio es muy fuerte para la comunicación También existe la Tele-Educación esto funciona parecido al Internet solo que este no se sube a la red y se emite en una señal televisiva y es usado principalmente en medios rurales donde no se puede hacer uso del Internet 5.4.2 Medicina. 1924, Aparece en la revista Radio News, un artículo titulado “Doctor por Radio”, el cual abarcó la portada y se describe el esquema de la circuitería necesaria para lograrlo. 1951, primera demostración que abarca varios de los estados de Estado Unidos, usando líneas dedicadas y estudios de televisión. 1955, en Montreal, el Dr. Albert Jutras realiza teleradiología, a fin de evitar las altas dosis de radiación que incidían en las fluoroscopias, se hizo uso de un interfono convencional. 1959, Nebraska, Cecil Wittson comienza sus primeros cursos de teleeducación y de telepsiquiatría , entre su Hospital y el Hospital del Estado en Norfolk, Virginia, a 180 kilómetros de distancia. 1971, Se inicia la era de los satélites, en especial el ATS (lanzado en 1966), con el fin de mejorar las prestaciones de una comunidad de nativos de Alaska. 1972, inicio de STARPAHC, programa de asistencia médica para nativos de Pago Arizona. Se realizó electrocardiografía y radiología y se transmitió por medio de microondas . 1975, finaliza el programa STARPAHC, el cual fue adaptado de un programa de atención médica para astronautas por la compañía Lockheed. 1988, Nasa lanza el programa “Space Bridge” a fin de colaborar con Armenia y Ufa (en esa época pertenecientes a la unión soviética), Armenia fue devastada por un terremoto. Las conexiones se hicieron usando vídeo en una dirección y voz y fax bidireccionales entre el Centro Médico de Yerevan, Armenia y cuatro Hospitales en Estados Unidos, extendiéndose posteriormente el programa a Ufa, para socorrer a los quemados en un terrible accidente de tren. 1995, La Clínica Mayo pone en marcha una conexión permanente con el Hospital Real de Ammán en Jordania, se realizaban consultas diarias entre un médico Hachemita y otros de Estados Unidos, el médico Hachemita presentaba, como si de una sesión clínica del hospital se tratase, a los pacientes de forma sucesiva; en directo los médicos americanos preguntaban o pedían al médico jordano que preguntara a su vez al paciente por sus dolencias. En otros casos eran interpretaciones de radiografías o problemas dermatológicos. 2001, Un doctor en New York elimina la vesícula enferma de un paciente en Estraburgo, Francia, por medio de un brazo robot. 5.4.3 Hogar. Las telecomunicaciones en el hogar, han estado ya desde algún tiempo, con sus primeras innovaciones que van desde: • La radio • La televisión • El Teléfono Pero en estos momentos las telecomunicaciones en el hogar son hechas para satisfacer necesidades del usuario para así hacer de su vida más confortable y sencilla En estos tiempos se encuentran otros tipos de telecomunicaciones en el hogar, desde redes wireless (Internet), pues en estos tipos ya no es una gran cosa tener una computadora en el hogar También en estos tipos se cuenta con celulares en cualquier parte, estos son un tipo de telecomunicación y también pueden interactuar con las redes wireless 5.4.4 Comercio Electrónico. En el actual contexto de la denominada “sociedad de la información” , la informática y las telecomunicaciones están introduciendo cambios significativos en nuestra sociedad, las tecnologías de la información no solo permiten la recolección, procesamiento, almacenamiento, recuperación y comunicación de grandes cantidades de información sino la celebración de actos que producen consecuencias jurídicas, así mismo, la rapidez de las operaciones realizadas a través del uso de la tecnología y los efectos “en masa” que esta puede producir han cambiado algunos conceptos o consideraciones respecto, en otros, del tiempo y distancia en cualquier actividad humana. Adicionalmente, día tras día, el lenguaje del papel los cuales son leídos a través de ordenadores electrónicos. Algunas de las ventajas de los negocios se basan en el uso de la tecnología la cual ha contribuido al cambio de los modelos y formas tradicionales de hacer negocios. Es por eso que las empresas están aprovechando los avances tecnológicos a fin de sustituir los documentos tradicionales con soporte de papel por mensajes electrónicos, dando cabida a los denominados documentos electrónicos. Este proceso de replicar documentos de papel en un contexto digital para transferirlos electrónicamente se ha denominado desmaterialización. Desde el punto de vista jurídico y de los negocios, un documento desmaterializado debe tener la misma significancia del papel sin sacrificar la eficacia legal y las ventajas del documento electrónico. La gran importancia que el comercio electrónico está adquiriendo en la actualidad ha generado la confusión en cuanto a su objetivo, y la coexistencia de una multiplicidad de definiciones, en un sentido amplio, comercio electrónico es cualquier intercambio de datos, por medios electrónicos. 5.4.5 Empresas Virtuales. La aparición y evolución de un nuevo tipo de empresa que está ligada a la expansión en Internet, es decir “Las empresas virtuales”. Existe todo un entramado de colaboradores que hicieron posible el nacimiento de la informática como un medio de comunicación, entre los cuales el más conocido es Bill Gates. Empresas pioneras en esta materia; las empresas que continúan en activo y las que han fracasado en su intento. TIPOS: Empresas encargadas de la distribución que están al servicio de las empresas virtuales, haciendo llegar el producto al consumidor. Empresas virtuales dedicadas a la venta de productos concretos que demandaban empresas específicas. Distinguimos: empresas pioneras: la más conocida, por lo menos nacionalmente, es Amazon, que es una librería en la que con solo entrar en su página, se pueden visualizar todas las gamas de libros, y elegir el producto que más se adecue a las necesidades del usuario. Empresas en activo: Actualmente existe una gran cantidad de empresas del e-commerce, que se dedican sobre todo a las finanzas, al ocio, informática, subastas, libros y música.

5.3 Internet.

5.3 Internet. Internet es un conjunto descentralizado de redes de comunicación interconectadas que utilizan la familia de protocolos TCP/IP, garantizando que las redes físicas heterogéneas que la componen funcionen como una red lógica única, de alcance mundial. Sus orígenes se remontan a 1969, cuando se estableció la primera conexión de computadoras, conocida como ARPANET, entre tres universidades en California y una en Utah, Estados Unidos. Uno de los servicios que más éxito ha tenido en Internet ha sido la World Wide Web (WWW, o "la Web"), hasta tal punto que es habitual la confusión entre ambos términos. La WWW es un conjunto de protocolos que permite, de forma sencilla, la consulta remota de archivos de hipertexto. Ésta fue un desarrollo posterior (1990) y utiliza Internet como medio de transmisión. Existen, por tanto, muchos otros servicios y protocolos en Internet, aparte de la Web: el envío de correo electrónico (SMTP), la transmisión de archivos (FTP y P2P), las conversaciones en línea (IRC), la mensajería instantánea y presencia, la transmisión de contenido y comunicación multimedia -telefonía (VoIP), televisión (IPTV)-, los boletines electrónicos (NNTP), el acceso remoto a otros dispositivos (SSH y Telnet) o los juegos en línea.

5.2 Comunicaciones Móviles.

5.2 Comunicaciones Móviles. Las comunicaciones móviles, se da cuando tanto emisor como receptor están en movimiento. La movilidad de estos dos factores que se encuentran en los extremos de la comunicación hace que se excluye casi en su integridad la utilización de hilos (cables) para realizar la comunicación en dichos extremos. Por lo tanto utiliza básicamente la comunicación vía radio. Esta es una gran ventaja de la comunicación vía radio por la movilidad de los extremos de la conexión. Las comunicaciones móviles, apareció en su fase comercial hasta finales del siglo XX. Los países nórdicos, fueron los pioneros en disponer de sistemas de telefonía móvil, Radio búsquedas (GPS), redes móviles privadas o Trunking, y sistemas de telefonía móvil avanzados fueron el siguiente paso. Después llegó la telefonía móvil digital, las agendas personales, laptops (computadores portátiles), netbooks (miniordenadores) y un sin fin de dispositivos dispuestos a conectarse vía radio con otros dispositivos o redes. Y finalmente la fusión entre comunicaciones móviles e Internet, el verdadero punto de inflexión tanto para uno como para otro.

5.1 Sistema Telefónico Conmutado.

5.1 Sistema Telefónico Conmutado. Durante más de un siglo, la principal infraestructura de telecomunicaciones internacional ha sido el sistema telefónico público de conmutación de circuitos. Este sistema se diseño para la transmisión analógica de voz y es inadecuado para las necesidades de las comunicaciones modernas. Anticipando una demanda considerable por parte de los usuarios de un servicio digital de extremo a extremo las compañías de teléfono del mundo y las PTT se unieron en 1984 bajo los auspicios de la CCITT y estuvieron de acuerdo en construir un sistema de teléfonos de conmutación de circuitos nuevo, completamente digital, para principios del siglo XXI. Este nuevo sistema, llamado ISDN (Integrated Services Digital Network, red digital de servicios integrados), tiene como meta principal la integración de servicios de voz y sin voz. ISDN ya está disponible en muchas localidades y su uso está creciendo lentamente. El servicio clave de ISDN continuará siendo la voz, aunque se añadirán muchas características mejoradas. Por ejemplo, muchos gerentes de compañías tienen un botón de intercomunicación en sus teléfonos para llamar a sus secretarias en forma instantánea (sin tiempo de establecimiento de llamada). Una característica de ISDN son los teléfonos con múltiples botones para establecer llamadas inmediatas con teléfonos en cualquier parte del mundo. Otra posibilidad es un teléfono que exhibe el número, nombre y dirección de quien llama en una pantalla mientras el teléfono suena. Una versión más avanzada de este recurso permite que el teléfono se conecte a una computadora para que se exhiba el registro de base de datos de quien llama cuando la llamada entra. Por ejemplo, un corredor de bolsa podría arreglar que cuando se conteste el teléfono la cartera de quien llama esté ya en la pantalla junto con los precios actuales de todas sus acciones. Otros servicios de voz avanzados incluyen el redireccionamiento de llamadas y las llamadas de conferencias en todo el mundo. Los servicios avanzados que no son de voz incluyen tomar la lectura del medidor de electricidad en forma remota y alarmas en línea médicas, contra ladrones, y de humo que llaman en forma automática al hospital, a la policía o al departamento de bomberos, respectivamente, y proporcionan la dirección para agilizar la respuesta.

Unidad 5 El Presente Y Futuro De Las Comunicaciones

Unidad 5 El Presente Y Futuro De Las Comunicaciones A continuación se presenta una pequeña idea del futuro de las comunicaciones:

4.6 Corrección De Errores.

4.6 Corrección De Errores. Entre los métodos más usados para corregir errores en transmisiones digitales destacan: • Sustitución de símbolos. • Retransmisión. • Corrección de errores en sentido directo. Sustitución de símbolos Se diseñó para utilizarse cuando haya un ser humano en la terminal de recepción. Analiza los datos recibidos y toma decisiones sobre su integridad. En la sustitución de símbolos si se recibe un carácter presuntamente equivocado se sustituye por un carácter que exige al operador que lo vuelva a interpretar. Ejemplo: Si el mensaje “documento” tuviera un error en el primer carácter, se sustituye la "d" por "%" y se le muestra al operador el mensaje “%ocumento”. En este caso por contexto se puede recuperar el contenido de ese carácter y es innecesaria la retransmisión pero si el mensaje fuera “&%,000.00” el operador no puede definir cuál es el carácter equivocado y se pide la retransmisión del mensaje. Retransmisión Cuando no se está operando en tiempo real puede ser útil pedir el reenvío íntegro de las tramas que se presumen erróneas o dañadas. Éste es posiblemente el método más seguro de corrección de errores aunque raramente es el método más eficiente. Es el caso por ejemplo del protocolo ARQ (Automatic Repeat-reQuest) donde el terminal que detecta un error de recepción pide la repetición automática de todo el mensaje. Si se usan mensajes cortos será menor la probabilidad de que haya una irregularidades en la transmisión pero sin embargo estos requieren más reconocimientos y cambios de dirección de línea que los mensajes largos. Con los mensajes largos se necesita menos tiempo de cambio de línea, aunque aumenta la probabilidad de que haya un error de transmisión, respecto a los mensajes cortos. Corrección de errores en sentido directo Conocido también como FEC (forward error correction) y es el único esquema de corrección de errores que detecta y corrige los errores de transmisión en la recepción, sin pedir la retransmisión del mensaje enviado. En el sistema FEC se agregan bits al mensaje antes de transmitirlo. Uno de los códigos más difundidos para enviar mensajes es el código Hamming. Donde la cantidad de bits en este código depende de la cantidad de bits en el carácter de datos. Como se observe en la siguiente ecuación: 2^n>m+n+1 y 2^n=m+n+1 Donde: n = cantidad de bits de Hamming. m = cantidad de bits en el carácter de datos. 4.6.1 El Código De Hamming. En informática, el código de Hamming es un código detector y corrector de errores que lleva el nombre de su inventor, Richard Hamming. En los datos codificados en Hamming se pueden detectar errores en un bit y corregirlos, sin embargo no se distingue entre errores de dos bits y de un bit (para lo que se usa Hamming extendido). Esto representa una mejora respecto a los códigos con bit de paridad, que pueden detectar errores en sólo un bit, pero no pueden corregirlo. El algoritmo de Hamming (7.4) puede corregir cualquier error de un solo bit, pero cuando hay errores en más de un bit, la palabra transmitida se confunde con otra con error en un sólo bit, siendo corregida, pero de forma incorrecta, es decir que la palabra que se corrige es otra distinta a la original, y el mensaje final será incorrecto sin saberlo. Para poder detectar (aunque sin corregirlos) errores de dos bits, se debe añadir un bit más, y el código se llama Hamming extendido. El procedimiento para esto se explica al final. El algoritmo es el siguiente: 1. Todos los bits cuya posición es potencia de dos se utilizan como bits de paridad (posiciones 1, 2, 4, 8, 16, 32, 64, etc.). 2. Los bits del resto de posiciones son utilizados como bits de datos (posiciones 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, etc.). 3. Cada bit de paridad se obtiene calculando la paridad de alguno de los bits de datos. La posición del bit de paridad determina la secuencia de los bits que alternativamente comprueba y salta, a partir de éste, tal y como se explica a continuación. • Posición 1: salta 0, comprueba 1, salta 1, comprueba 1, etc. • Posición 2: salta 1, comprueba 2, salta 2, comprueba 2, etc. • Posición 4: salta 3, comprueba 4, salta 4, comprueba 4, etc. • Posición 8: salta 7, comprueba 8, salta 8, comprueba 8, etc. • Posición 16: salta 15, comprueba 16, salta 16, comprueba 16, etc. • Regla general para la posición n es: salta n-1 bits, comprueba n bits, salta n bits, comprueba n bits... • Y así sucesivamente. En otras palabras, el bit de paridad de la posición comprueba los bits en las posiciones que tengan al bit k en su representación binaria. Dicho a la inversa, el bit 13, por ejemplo, es chequeado por los bits 8, 4 y 1, al ser estos los de su representación binaria: 13=1101(2); 8=1000(2); 4=0100(2); 1=0001(2). Así, por ejemplo, para los primeros términos se tiene: • En la Posición 1 (2^0 = 1), comprobaríamos los bits: 1, 3, 5, 7, 9, 11, 13... • En la Posición 2 (2^1 = 2), los bits: 2, 3, 6, 7, 10, 11, 14, 15... • En la Posición 4 (2^2 = 4), los bits: 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23... • En la Posición 8 (2^3 = 8) tendríamos: 8, 9, 10, 11, 12, 13, 14, 15, 24-31... Siguiendo el algoritmo hasta completar la nueva cadena.

4.5 Mecanismos Para La Detección De Errores.

4.5 Mecanismos Para La Detección De Errores. Existen multitud de protocolos de detección y corrección de errores (como los v.42 o MNP en los módems) que establecen un conjunto de normas para sincronizar y ordenar las tramas de datos y definen procedimientos para determinar cuándo se ha producido un error y como deben corregirse. 4.5.1 Verificación De Redundancia Vertical (VRC). La verificación de paridad (a veces denominada VRC o verificación de redundancia vertical) es uno de los mecanismos de verificación más simples. Consiste en agregar un bit adicional (denominado bit de paridad) a un cierto número de bits de datos denominado palabra código (generalmente 7 bits, de manera que se forme un byte cuando se combina con el bit de paridad) cuyo valor (0 o 1) es tal que el número total de bits 1 es par. Para ser más claro, 1 si el número de bits en la palabra código es impar, 0 en caso contrario. Tomemos el siguiente ejemplo: En este ejemplo, el número de bits de datos 1 es par, por lo tanto, el bit de paridad se determina en 0. Por el contrario, en el ejemplo que sigue, los bits de datos son impares, por lo que el bit de paridad se convierte en 1: Supongamos que después de haber realizado la transmisión, el bit con menos peso del byte anterior (aquel que se encuentra más a la derecha) ha sido víctima de una interferencia: El bit de paridad, en este caso, ya no corresponde al byte de paridad: se ha detectado un error. Sin embargo, si dos bits (o un número par de bits) cambian simultáneamente mientras se está enviando la señal, no se habría detectado ningún error. Ya que el sistema de control de paridad puede detectar un número impar de errores, puede detectar solamente el 50% de todos los errores. Este mecanismo de detección de errores también tiene la gran desventaja de ser incapaz de corregir los errores que encuentra (la única forma de arreglarlo es solicitar que el byte erróneo sea retransmitido). 4.5.2 Verificación De Redundancia Longitudinal (LRC). La verificación de la redundancia longitudinal (LRC, también denominada verificación de redundancia horizontal) no consiste en verificar la integridad de los datos mediante la representación de un carácter individual, sino en verificar la integridad del bit de paridad de un grupo de caracteres. Digamos que "HELLO" es el mensaje que transmitiremos utilizando el estándar ASCII. Estos son los datos tal como se transmitirán con los códigos de verificación de redundancia longitudinal: 4.5.3 Verificación De Redundancia Cíclica (CRC). La verificación de redundancia cíclica consiste en la protección de los datos en bloques, denominados tramas. A cada trama se le asigna un segmento de datos denominado código de control (al que se denomina a veces FCS, secuencia de verificación de trama, en el caso de una secuencia de 32 bits, y que en ocasiones se identifica erróneamente como CRC). El código CRC contiene datos redundantes con la trama, de manera que los errores no sólo se pueden detectar sino que además se pueden solucionar. El concepto de CRC consiste en tratar a las secuencias binarias como polinomios binarios, denotando polinomios cuyos coeficientes se correspondan con la secuencia binaria. Por ejemplo, la secuencia binaria 0110101001 se puede representar como un polinomio, como se muestra a continuación: 0*X9 + 1*X8 + 1*X7 + 0*X6 + 1*X5 + 0*X4 + 1*X3 + 0*X2 + 0*X1 + 1*X0 Siendo X8 + X7 + X5 + X3 + X0 O X8 + X7 + X5 + X3 + 1 De esta manera, la secuencia de bits con menos peso (aquella que se encuentra más a la derecha) representa el grado 0 del polinomio (X0 = 1), (X0 = 1), (X0 = 1), el 4º bit de la derecha representa el grado 3 del polinomio (X3), y así sucesivamente. Luego, una secuencia de n- bits forma un polinomio de grado máximo n-1. Todas las expresiones de polinomios se manipulan posteriormente utilizando un módulo 2. En este proceso de detección de errores, un polinomio predeterminado (denominado polinomio generador y abreviado G(X)) es conocido tanto por el remitente como por el destinatario. El remitente, para comenzar el mecanismo de detección de errores, ejecuta un algoritmo en los bits de la trama, de forma que se genere un CRC, y luego transmite estos dos elementos al destinatario. El destinatario realiza el mismo cálculo a fin de verificar la validez del CRC. Es un código de detección de errores usado frecuentemente en redes digitales y en dispositivos de almacenamiento para detectar cambios accidentales en los datos. Los bloques de datos ingresados en estos sistemas contiene un valor de verificación adjunto, basado en el residuo de una división de polinomios; el cálculo es repetido, y la acción de corrección puede tomarse encontrar de los datos presuntamente corrompidos en caso de que el valor de verificación no concuerde; por lo tanto se puede afirmar que este código es un tipo de función que recibe un flujo de datos de cualquier longitud como entrada y devuelve un valor de longitud fija como salida. El término suele ser usado para designar tanto a la función como a su resultado. Pueden ser usadas como suma de verificación para detectar la alteración de datos durante su transmisión o almacenamiento. Las CRC son populares porque su implementación en hardware binario es simple, son fáciles de analizar matemáticamente y son particularmente efectivas para detectar errores ocasionados por ruido en los canales de transmisión. La CRC fue inventada y propuesta por W. Wesley Peterson en un artículo publicado en 1961

4.4 Efectos Del Ruido En Las Señales Transmitidas (Errores En La Recepción).

4.4 Efectos Del Ruido En Las Señales Transmitidas (Errores En La Recepción). El ruido se debe a múltiples causas: a los componentes electrónicos (amplificadores), al ruido térmico de los resistores, a las interferencias de señales externas, etc. Es imposible eliminar totalmente el ruido, ya que los componentes electrónicos no son perfectos. Sin embargo, es posible limitar su valor de manera que la calidad de la comunicación resulte aceptable. En toda transmisión digital sobre un canal real los niveles eléctricos de la señal están expuestos a pequeñas variaciones ocasionadas por interferencias, ruido o el incorrecto funcionamiento de alguno de los equipos que componen el canal. La suma de estos factores puede llega a cambiar la interpretación de los bits alterando el significado de la información enviada. En un canal la calidad de este se mide en base a la tasa de error BER (Bit Error Rate en inglés) que se obtiene como el resultado de medir el número de bit recibidos erróneos entre el total de bit transmitidos. BER = nº de bit recibidos erróneos/total de bit transmitidos

4.3 Perturbaciones.

4.3 Perturbaciones. Todo aquello que hace que no se establezca una correcta comunicación se considera perturbación por ejemplo si es conversación que uno hable un idioma y el que escucha no lo comparta, que haya ruidos y se escuche bien, que use regionalismos que el otro no conoce y no puede comprender correctamente el mensaje, que diga una cosa pero su cuerpo o gestos indiquen otra (lenguaje no verbal) si es una comunicación telefónica que haya ruidos en la línea o se interrumpa parte y no se comprenda que el emisor utilice términos muy específicos (por ejemplo un medico con términos extraños que el paciente no comprende o no conoce) por eso tienen que compartir el código, es decir la lengua. Durante la comunicación se pueden producir diferentes alteraciones y esto no ocurre solo en el aspecto humano, sino que también podemos encontradnos con problemas en las comunicaciones de datos o redes computacionales. Con nuestro trabajo pretendemos dejar claramente al lector una idea de las perturbaciones que se producen durante las transmisiones de datos. Observaremos que clase de alteraciones son las más frecuentes, donde se producen y cómo podemos evitarlas. 4.3.1 Ruidos. En comunicación, se denomina ruido a toda señal no deseada que se mezcla con la señal útil que se quiere transmitir. Es el resultado de diversos tipos de perturbaciones que tiende a enmascarar la información cuando se presenta en la banda de frecuencias del espectro de la señal, es decir, dentro de su ancho de banda. Hay diferentes tipos de ruido: ruido térmico debido a la agitación térmica de electrones dentro del conductor, ruido de intermodulación cuando distintas frecuencias comparten el mismo medio de transmisión, diafonía se produce cuando hay un acoplamiento entre las líneas que transportan las señales y el ruido impulsivo se trata de pulsos discontinuos de poca duración y de gran amplitud que afectan a la señal. 4.3.2 Distorsión Por Retardo. Ocurre cuando una señal se retrasa más a ciertas frecuencias que a otras. Si un método de transmisión de datos comprende datos transmitidos a dos frecuencias distintas, los bits transmitidos a una frecuencia pueden viajar ligeramente más rápido que los transmitidos en la otra. Existe un dispositivo llamado igualador (o ecualizador) que compensa tanto la atenuación como la distorsión por retraso. Debido a que en medios guiados, la velocidad de propagación de una señal varía con la frecuencia, hay frecuencias que llegan antes que otras dentro de la misma señal y por tanto las diferentes componentes en frecuencia de la señal llegan en instantes diferentes al receptor. Para atenuar este problema se usan técnicas de ecualización. 4.3.3 Atenuación. Ocurre cuando las altas frecuencias pierden potencia con mayor rapidez que las frecuencias bajas durante la transmisión, lo que puede hacer que la señal recibida sea distorsionada por una pérdida desigual de sus frecuencias componentes. La pérdida de potencia está en función del método y medio de transmisión. Además, la atenuación aumenta con la frecuencia e inversamente con el diámetro del alambre. Este problema se evita con estaciones repetidoras que refuercen la señal cuando sea necesario La energía de una señal decae con la distancia, por lo que hay que asegurarse que llegue con la suficiente energía como para ser captada por la circuitería del receptor y además, el ruido debe ser sensiblemente menor que la señal original (para mantener la energía de la señal se utilizan amplificadores o repetidores). Debido a que la atenuación varía en función de la frecuencia, las señales analógicas llegan distorsionadas, por lo que hay que utilizar sistemas que le devuelvan a la señal sus características iniciales (usando bobinas que cambian las características eléctricas o amplificando más las frecuencias más altas.

4.2 Medios No Guiados.

4.2 Medios No Guiados. Tanto la transmisión como la recepción de información se llevan a cabo mediante antenas. A la hora de transmitir, la antena irradia energía electromagnética en el medio. Por el contrario en la recepción la antena capta las ondas electromagnéticas del medio que la rodea. La configuración para las transmisiones no guiadas puede ser direccional y omnidireccional. En la direccional, la antena transmisora emite la energía electromagnética concentrándola en un haz, por lo que las antenas emisora y receptora deben estar alineadas. En la omnidireccional, la radiación se hace de manera dispersa, emitiendo en todas direcciones pudiendo la señal ser recibida por varias antenas. Generalmente, cuanto mayor es la frecuencia de la señal transmitida es más factible confinar la energía en un haz direccional. La transmisión de datos a través de medios no guiados, añade problemas adicionales provocados por la reflexión que sufre la señal en los distintos obstáculos existentes en el medio. Resultando más importante el espectro de frecuencias de la señal transmitida que el propio medio de transmisión en sí mismo. La comunicación inalámbrica o sin cables es aquella en la que extremos de la comunicación (emisor/receptor) no se encuentran unidos por un medio de propagación físico, sino que se utiliza la modulación de ondas electromagnéticas a través del espacio. En este sentido, los dispositivos físicos sólo están presentes en los emisores y receptores de la señal, entre los cuales encontramos: antenas, computadoras portátiles, PDA, teléfonos móviles, etc. En general, la tecnología inalámbrica utiliza ondas de radiofrecuencia de baja potencia y una banda específica, de uso libre o privada para transmitir, entre dispositivos. Estas condiciones de libertad de utilización sin necesidad de licencia, ha propiciado que el número de equipos, especialmente computadoras, que utilizan las ondas para conectarse, a través de redes inalámbricas haya crecido notablemente. La tendencia a la movilidad y la ubicuidad hacen que cada vez sean más utilizados los sistemas inalámbricos, y el objetivo es ir evitando los cables en todo tipo de comunicación, no solo en el campo informático sino en televisión, telefonía, seguridad, domótica, etc. Un fenómeno social que ha adquirido gran importancia, en todo el mundo, como consecuencia del uso de la tecnología inalámbrica son las comunidades inalámbricas que buscan la difusión de redes alternativas a las comerciales. El mayor exponente de esas iniciativas en España es Red Libre. 4.2.1 Transmisión De Señales De Radio. La radiocomunicación es una forma de telecomunicación que se realiza a través de ondas de radio u ondas hertzianas, la que a su vez está caracterizada por el movimiento de los campos eléctricos y campos magnéticos. La comunicación vía radio se realiza a través del espectro radioeléctrico cuyas propiedades son diversas dependiendo de su bandas de frecuencia. Así tenemos bandas conocidas como baja frecuencia, media frecuencia, alta frecuencia, muy alta frecuencia, ultra alta frecuencia, etc. En cada una de ellas, el comportamiento de las ondas es diferente. La radiocomunicación es la tecnología que posibilita la transmisión de señales mediante la modulación(de su frecuencia o amplitud) de ondas electromagnéticas. Estas ondas no requieren un medio físico de transporte, por lo que pueden propagarse tanto a través del aire como del espacio vacío. Una onda de radio se origina cuando una partícula cargada (por ejemplo, un electrón) se excita a una frecuencia situada en la zona de radiofrecuencia (RF) del espectro electromagnético. Cuando la onda de radio actúa sobre un conductor eléctrico (la antena), induce en él un movimiento de la carga eléctrica (corriente eléctrica) que puede ser transformado en señales de audio u otro tipo de señales portadoras de información. El término radiofrecuencia, también denominado espectro de radiofrecuencia o RF, se aplica a la porción menos energética del espectro electromagnético, situada entre unos 3 kHz y unos 300 GHz. El hercio es la unidad de medida de la frecuencia de las ondas, y corresponde a un ciclo por segundo. Las ondas electromagnéticas de esta región del espectro, se pueden transmitir aplicando la corriente alterna originada en un generador a una antena. 4.2.2 Microondas En El Espacio Libre. Se denomina así la porción del espectro electromagnético que cubre las frecuencias entre aproximadamente 3 GHz y 300 GHz (1 GHz = 10A9 Hz), que corresponde a la longitud de onda en vacío entre 10 cm. y lmm. Las emisiones pueden ser de forma analógica o digitales pero han de estar en la línea visible. En un sistema de microondas se usa el espacio aéreo como medio físico de transmisión. La información se transmite en forma digital a través de ondas de radio de muy corta longitud. Pueden direccionarse múltiples canales a múltiples estaciones dentro de un enlace dado, o pueden establecer enlaces punto a punto. Las estaciones consisten en una antena tipo plato y de circuitos que interconectan la antena con la terminal del usuario. 4.2.3 Satélite. Un satélite artificial es una nave espacial fabricada en la Tierra o en otro lugar del espacio y enviada en un vehículo de lanzamiento, un tipo de cohete que envía una carga útil al espacio exterior. Los satélites artificiales pueden orbitar alrededor de lunas u objetos naturales del espacio, cometas, asteroides, planetas, estrellas o incluso galaxias. Tras su vida útil, los satélites artificiales pueden quedar orbitando como basura espacial también no son los satélites artificiales los únicos en el planeta también existen satélites naturales el más cercano es la luna. Los satélites artificiales de comunicaciones son un medio muy apto para emitir señales de radio en zonas amplias o poco desarrolladas, ya que pueden utilizarse como enormes antenas suspendidas del cielo. Se suelen utilizar frecuencias elevadas en el rango de los GHz; además, la elevada direccionalidad de antenas utilizadas permite "alumbrar" zonas concretas de la Tierra. El primer satélite de comunicaciones, el Telstar 1, se puso en órbita en 1962. La primera transmisión de televisión vía satélite se llevó a cabo en 1964. 4.2.4 Infrarrojas. La radiación infrarroja, radiación térmica o radiación IR es un tipo de radiación electromagnética de mayor longitud de onda que la luz visible, pero menor que la de las microondas. Consecuentemente, tiene menor frecuencia que la luz visible y mayor que las microondas. Su rango de longitudes de onda va desde unos 0,7 hasta los 100 micrómetros.1 La radiación infrarroja es emitida por cualquier cuerpo cuya temperatura sea mayor que 0 Kelvin, es decir, −273,15 grados Celsius (cero absoluto). Los infrarrojos son clasificados, de acuerdo a su longitud de onda, de este modo: • infrarrojo cercano (de 800 nm a 2500 nm) • infrarrojo medio (de 2.5 µm a 50 µm) • infrarrojo lejano (de 50 µm a 1000 µm) Los infrarrojos se utilizan en los equipos de visión nocturna cuando la cantidad de luz visible es insuficiente para ver los objetos. La radiación se recibe y después se refleja en una pantalla. Los objetos más calientes se convierten en los más luminosos. Un uso muy común es el que hacen los mandos a distancia (ó telecomandos) que generalmente utilizan los infrarrojos en vez de ondas de radio ya que no interfieren con otras señales como las señales de televisión. Los infrarrojos también se utilizan para comunicar a corta distancia los ordenadores con sus periféricos. Los aparatos que utilizan este tipo de comunicación cumplen generalmente un estándar publicado por Infrared Data Association. La luz utilizada en las fibras ópticas es generalmente de infrarrojos.

4.1 Medios Guiados.

4.1 Medios Guiados. El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión. Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal 1. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío. Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro. Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace. La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares 4.1.1 Cable De Par Trenzado (Señal Eléctrica). El cable de par trenzado es un medio de conexión usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes. Fue inventado por Alexander Graham Bell. El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. La tasa de trenzado, usualmente definida en vueltas por kilómetro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto mayor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de las conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de interferencias electromagnéticas. Tipos de cable de para trenzado: Unshielded twisted pair o par trenzado sin blindaje: son cables de pares trenzados sin blindar que se utilizan para diferentes tecnologías de redes locales. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal. Shielded twisted pair o par trenzado blindado: se trata de cables de cobre aislados dentro de una cubierta protectora, con un número específico de trenzas por pie. STP se refiere a la cantidad de aislamiento alrededor de un conjunto de cables y, por lo tanto, a su inmunidad al ruido. Se utiliza en redes de ordenadores como Ethernet o Token Ring. Es más caro que la versión sin blindaje. Foiled twisted pair o par trenzado con blindaje global: son unos cables de pares que poseen una pantalla conductora global en forma trenzada. Mejora la protección frente a interferencias y su impedancia es de 12 ohmios. Está limitado en distancia, ancho de banda y tasa de datos. También destacar que la atenuación es una función fuertemente dependiente de la frecuencia. La interferencia y el ruido externo también son factores importantes, por eso se utilizan coberturas externas y el trenzado. Para señales analógicas se requieren amplificadores cada 5 o 6 kilómetros, para señales digitales cada 2 ó 3. En transmisiones de señales analógicas punto a punto, el ancho de banda puede llegar hasta 250 kHz. En transmisión de señales digitales a larga distancia, el data rate no es demasiado grande, no es muy efectivo para estas aplicaciones. En redes locales que soportan ordenadores locales, el data rate puede llegar a 10 Mbps (Ethernet) y 100 Mbps (Fast-Ethernet). En el cable par trenzado de cuatro pares, normalmente solo se utilizan dos pares de conductores, uno para recibir (cables 3 y 6) y otro para transmitir (cables 1 y 2), aunque no se pueden hacer las dos cosas a la vez, teniendo una trasmisión half-dúplex. Si se utilizan los cuatro pares de conductores la transmisión es full-dúplex. Ventajas: Bajo costo en su contratación. Alto número de estaciones de trabajo por segmento. Facilidad para el rendimiento y la solución de problemas. Puede estar previamente cableado en un lugar o en cualquier parte. Desventajas: Altas tasas de error a altas velocidades. Ancho de banda limitado. Baja inmunidad al ruido. Baja inmunidad al efecto crosstalk (diafonía) Alto costo de los equipos. Distancia limitada (100 metros por segmento). 4.1.2 Cable Coaxial (Señal Eléctrica). El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante. El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido. Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior. Cable coaxial RG-59. A: Cubierta protectora de plástico B: Malla de cobre C: Aislante D: Núcleo de cobre La construcción de cables coaxiales varía mucho. La elección del diseño afecta al tamaño, flexibilidad y el cable pierde propiedades. Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa. El apantallamiento tiene que ver con el trenzado o malla de metal (u otro material) que rodea los cables. El apantallamiento protege los datos que se transmiten, absorbiendo el ruido, de forma que no pasa por el cable y no existe distorsión de datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le llama cable apantallado doble. Para grandes interferencias, existe el apantallamiento cuádruple. Este apantallamiento consiste en dos láminas aislantes, y dos capas de apantallamiento de metal trenzado. El núcleo de un cable coaxial transporta señales electrónicas que forman la información. Este núcleo puede ser sólido (normalmente de cobre) o de hilos. Rodeando al núcleo existe una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la distorsión que proviene de los hilos adyacentes. El núcleo y la malla deben estar separados uno del otro. Si llegaran a tocarse, se produciría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla, atravesarían el hilo de cobre. Un cortocircuito ocurre cuando dos hilos o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado. En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido del fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el efecto es menor, y casi no se detecta. Estos cortocircuitos de bajo voltaje causan un fallo en el dispositivo y lo normal es que se pierdan los datos que se estaban transfiriendo. Una cubierta exterior no conductora (normalmente hecha de goma, teflón o plástico) rodea todo el cable, para evitar las posibles descargas eléctricas. El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado, por esto hubo un tiempo que fue el más usado. La malla de hilos absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un sistema sencillo. Se puede encontrar un cable coaxial: • entre la antena y el televisor; • en las redes urbanas de televisión por cable (CATV) e Internet; • entre un emisor y su antena de emisión (equipos de radioaficionados); • en las líneas de distribución de señal de vídeo (se suele usar el RG-59); • en las redes de transmisión de datos como Ethernet en sus antiguas versiones 10BASE2 y 10BASE5; en las redes telefónicas interurbanas y en los cables submarinos. Antes de la utilización masiva de la fibra óptica en las redes de telecomunicaciones, tanto terrestres como submarinas, el cable coaxial era ampliamente utilizado en sistemas de transmisión de telefonía analógica basados en la multiplexación por división de frecuencia (FDM), donde se alcanzaban capacidades de transmisión de más de 10.000 circuitos de voz. Asimismo, en sistemas de transmisión digital, basados en la multiplexación por división de tiempo (TDM), se conseguía la transmisión de más de 7.000 canales de 64 Kbps El cable utilizado para estos fines de transmisión a larga distancia necesitaba tener una estructura diferente al utilizado en aplicaciones de redes LAN, ya que, debido a que se instalaba enterrado, tenía que estar protegido contra esfuerzos de tracción y presión, por lo que normalmente aparte de los aislantes correspondientes llevaba un armado exterior de acero. 4.1.3 Fibra Óptica (Señal Luminosa). La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED. Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión. La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas. Núcleo y revestimiento de la fibra óptica. Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total. En el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias. A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son: Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales. Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra. Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos. Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales. Funcionamiento Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell. Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo límite. Ventajas • Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del GHz). • Pequeño tamaño, por lo tanto ocupa poco espacio. • Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente. • Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional. • Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo... • Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía luminosa en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad. • No produce interferencias. • Insensibilidad a los parásitos, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica. • Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km. antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km. utilizando amplificadores láser. • Gran resistencia mecánica (resistencia a la tracción, lo que facilita la instalación). • Resistencia al calor, frío, corrosión. • Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar y posterior reparación de la avería, simplificando la labor de mantenimiento. • Con un coste menor respecto al cobre. Desventajas A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes: • La alta fragilidad de las fibras. • Necesidad de usar transmisores y receptores más caros. • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable. No puede transmitir electricidad para alimentar repetidores intermedios. • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica. • La fibra óptica convencional no puede transmitir potencias elevadas.2 • No existen memorias ópticas. La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados. Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica. Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.

Unidad 4 Medios De Transmisión Y Perturbaciones.

Unidad 4 Medios De Transmisión Y Perturbaciones. Como futuros Ingenieros de Sistemas y Telecomunicaciones, es importante comenzar a apropiarnos de los términos con los cuales estaremos relacionados, los medios confinados y no confinados son los que estudiaremos en nuestro trabajo, para entender esto necesitamos saber que un medio es por el cual transmitimos información en forma de señales, por este ellas se desplazaran desde un host emisor a un host de destino, siendo el medio el puente necesario para esto. El medio puede ser de diferente naturaleza, y la red resultante se clasificará de acuerdo con él. La elección del medio de transmisión apropiado para la red depende de requerimientos de: • Seguridad • Velocidad • Transmisión • Atenuación • Características de los dispositivos o equipos a conectar • Inmunidad al ruido Los medios de transmisión se clasifican en confinados y no confinados. En ambos casos, la comunicación se lleva a cabo con ondas electromagnéticas. En los medios confinados las ondas se confinan en un medio sólido, como por ejemplo: un par trenzado, un cable coaxial o una fibra óptica. La atmósfera o espacio exterior son ejemplos de medios no confinados, que proporcionan un medio de transmitir las señales pero sin confirmarlas; este tipo de transmisión se denomina inalámbrica. Los tipos principales de medios físicos son el cableado de cobre, el cableado de fibra óptica y la propia atmósfera, usada en transmisiones sin cable, mediante radiofrecuencias, satélites, etc. Durante la comunicación se pueden producir diferentes alteraciones y esto no ocurre solo en el aspecto humano, sino que también podemos encontradnos con problemas en las comunicaciones de datos o redes computacionales. Con nuestro trabajo pretendemos dejar claramente al lector una idea de las perturbaciones que se producen durante las transmisiones de datos. Observaremos que clase de alteraciones son las más frecuentes, donde se producen y cómo podemos evitarlas.

3.5 Sistemas De Conmutación

3.5 Sistemas De Conmutación 3.5.1 Topologías La topología de red se define como la cadena de comunicación usada por los computadores que conforman una red para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas. Además de la topología estética, se puede dar una topología lógica a la red y eso dependerá de lo que se necesite en el momento. En algunos casos se puede usar la palabra arquitectura en un sentido relajado para hablar a la vez de la disposición física del cableado y de cómo el protocolo considera dicho cableado. Así, en un anillo con una MAU podemos decir que tenemos una topología en anillo, o de que se trata de un anillo con topología en estrella. La topología de red la determina únicamente la configuración de las conexiones entre nodos. La distancia entre los nodos, las interconexiones físicas, las tasas de transmisión y los tipos de señales no pertenecen a la topología de la red, aunque pueden verse afectados por la misma. Tipos de arquitecturas: Redes de araña La topología en estrella reduce la posibilidad de fallo de red conectando todos los nodos a un nodo central. Cuando se aplica a una red basada en la topología estrella este concentrador central reenvía todas las transmisiones recibidas de cualquier nodo periférico a todos los nodos periféricos de la red, algunas veces incluso al nodo que lo envió. Todos los nodos periféricos se pueden comunicar con los demás transmitiendo o recibiendo del nodo central solamente. Un fallo en la línea de conexión de cualquier nodo con el nodo central provocaría el aislamiento de ese nodo respecto a los demás, pero el resto de sistemas permanecería intacto. El tipo de concentrador hub se utiliza en esta topología, aunque ya es muy obsoleto; se suele usar comúnmente un switch. La desventaja radica en la carga que recae sobre el nodo central. La cantidad de tráfico que deberá soportar es grande y aumentará conforme vayamos agregando más nodos periféricos, lo que la hace poco recomendable para redes de gran tamaño. Además, un fallo en el nodo central puede dejar inoperante a toda la red. Esto último conlleva también una mayor vulnerabilidad de la red, en su conjunto, ante ataques. Si el nodo central es pasivo, el nodo origen debe ser capaz de tolerar un eco de su transmisión. Una red, en estrella activa, tiene un nodo central activo que normalmente tiene los medios para prevenir problemas relacionados con el eco. Una topología en árbol (también conocida como topología jerárquica) puede ser vista como una colección de redes en estrella ordenadas en una jerarquía. Éste árbol tiene nodos periféricos individuales (por ejemplo hojas) que requieren transmitir a y recibir de otro nodo solamente y no necesitan actuar como repetidores o regeneradores. Al contrario que en las redes en estrella, la función del nodo central se puede distribuir. Como en las redes en estrella convencionales, los nodos individuales pueden quedar aislados de la red por un fallo puntual en la ruta de conexión del nodo. Si falla un enlace que conecta con un nodo hoja, ese nodo hoja queda aislado; si falla un enlace con un nodo que no sea hoja, la sección entera queda aislada del resto. Para aliviar la cantidad de tráfico de red que se necesita para retransmitir en su totalidad, a todos los nodos, se desarrollaron nodos centrales más avanzados que permiten mantener un listado de las identidades de los diferentes sistemas conectados a la red. Éstos switches de red “aprenderían” cómo es la estructura de la red transmitiendo paquetes de datos a todos los nodos y luego observando de dónde vienen los paquetes de respuesta también es utilizada como un enchufe u artefacto. 3.5.2 Técnicas De Conmutación 3.5.2.1 Conmutación De Circuitos La conmutación de circuitos es un tipo de conexión que realizan los diferentes nodos de una red para lograr un camino apropiado para conectar dos usuarios de una red de telecomunicaciones. A diferencia de lo que ocurre en la conmutación de paquetes, en este tipo de conmutación se establece un canal de comunicaciones dedicado entre dos estaciones. Se reservan recursos de transmisión y de conmutación de la red para su uso exclusivo en el circuito durante la conexión. Ésta es transparente: una vez establecida parece como si los dispositivos estuvieran realmente conectados. La comunicación por conmutación de circuitos implica tres fases: el establecimiento del circuito, la transferencia de datos y la desconexión del circuito. Una vez que el camino entre el origen y el destino queda fijado, queda reservado un ancho de banda fijo hasta que la comunicación se termine. Para comunicarse con otro destino, el origen debe primero finalizar la conexión establecida. Los nodos deben tener capacidad de conmutación y de canal suficiente como para gestionar la conexión solicitada; los conmutadores deben contar con la inteligencia necesaria para realizar estas reservas y establecer una ruta a través de la red. El ejemplo más conocido de este tipo de conexión es la Red Telefónica Conmutada. 3.5.2.2 Conmutación De Paquetes La conmutación de paquetes es el envío de datos en una red de computadoras. Un paquete es un grupo de información que consta de dos partes: los datos propiamente dichos y la información de control, que especifica la ruta a seguir a lo largo de la red hasta el destino del paquete. Existe un límite superior para el tamaño de los paquetes; si se excede, es necesario dividir el paquete en otros más pequeños. Los tipos de datos que se manejan en este "medio" son: voz, datos, multimedia. (Video) Ventajas Los paquetes forman una cola y se transmiten lo más rápido posible. Permiten la conversión en la velocidad de los datos. La red puede seguir aceptando datos aunque la transmisión sea lenta. Existe la posibilidad de manejar prioridades (si un grupo de información es más importante que los otros, será transmitido antes que dichos otros). Técnicas Para la utilización de la conmutación de paquetes se han definido dos tipos de técnicas: los datagramas y los circuitos virtuales. Datagramas Internet es una red de datagramas. En Internet existen 2 tendencias: orientado a conexión y no orientado a conexión. En el caso orientado a conexión, el protocolo utilizado para transporte es TCP. En el caso no orientado a conexión, el protocolo utilizado para transporte es UDP. TCP garantiza que todos los datos lleguen correctamente y en orden. UDP no tiene ninguna garantía. No todos los paquetes siguen una misma ruta. Un paquete se puede destruir en el camino, cuya recuperación es responsabilidad de la estación de origen (esto da a entender que el resto de paquetes están intactos). Circuitos Virtuales Son los más usados. Su funcionamiento es similar al de la Red de conmutación de circuitos (la diferencia radica en que en los circuitos virtuales la ruta no es dedicada, sino que un único enlace entre dos nodos se puede compartir dinámicamente en el tiempo por varios paquetes). Previo a la transmisión se establece la ruta previa por medio de paquetes de petición de llamada (pide una conexión lógica al destino) y de llamada aceptada (en caso de que la estación destino esté apta para la transmisión envía este tipo de paquete); establecida la transmisión, se da el intercambio de datos, y una vez terminado, se presenta el paquete de petición de liberación (aviso de que la red está disponible, es decir que la transmisión ha llegado a su fin). Cada paquete tiene un identificador de circuito virtual en lugar de la dirección del destino. Los paquetes se recibirán en el mismo orden en que fueron enviados. Si no existiese una técnica de conmutación en la comunicación entre dos nodos, se tendría que enlazar en forma de malla. Una ventaja adicional de la conmutación de paquetes (además de la seguridad de transmisión de datos) es que como se parte en paquetes el mensaje, éste se está ensamblando de una manera más rápida en el nodo destino, ya que se están usando varios caminos para transmitir el mensaje, produciéndose un fenómeno conocido como transmisión en paralelo. Además, si un mensaje tuviese un error en un bit de información, y estuviésemos usando la conmutación de mensajes, tendríamos que retransmitir todo el mensaje; mientras que con la conmutación de paquetes solo hay que retransmitir el paquete con el bit afectado, lo cual es mucho menos problemático. Lo único negativo, quizás, en el esquema de la conmutación de paquetes es que su encabezado es más grande. La conmutación de paquetes se trata del procedimiento mediante el cual, cuando un nodo quiere enviar información a otro lo divide en paquetes, los cuales contienen la dirección del nodo destino. En cada nodo intermedio por el que pasa el paquete se detiene el tiempo necesario para procesarlo. Funciones Cada nodo intermedio realiza las siguientes funciones: Almacenamiento y retransmisión (store and forward): hace referencia al proceso de establecer un camino lógico de forma indirecta haciendo "saltar" la información de origen al destino a través de los nodos intermedios. Control de ruta (routing): hace referencia a la selección de un nodo del camino por el que deben retransmitirse los paquetes para hacerlos llegar a su destino. Los paquetes en fin, toman diversas vías, pero nadie puede garantizar que todos los paquetes vayan a llegar en algún momento determinado. En síntesis, una red de conmutación de paquetes consiste en una "malla" de interconexiones facilitadas por los servicios de telecomunicaciones, a través de la cual los paquetes viajan desde la fuente hasta el destino.

3.4 Multiplexación (Muchas Señales En Una)

3.4 Multiplexación (Muchas Señales En Una) En telecomunicación, la multiplexación es la combinación de dos o más canales de información en un solo medio de transmisión usando un dispositivo llamado multiplexor. El proceso inverso se conoce como demultiplexación. Un concepto muy similar es el de control de acceso al medio. Existen muchas estrategias de multiplexación según el protocolo de comunicación empleado, que puede combinarlas para alcanzar el uso más eficiente; los más utilizados son:  la multiplexación por división de tiempo o TDM (Time division multiplexing );  la multiplexación por división de frecuencia o FDM (Frequency-division multiplexing) y su equivalente para medios ópticos, por división de longitud de onda o WDM (de Wavelength);  la multiplexación por división en código o CDM (Code division multiplexing); Cuando existe un esquema o protocolo de multiplexación pensado para que múltiples usuarios compartan un medio común, como por ejemplo en telefonía móvil o WiFi, suele denominarse control de acceso al medio o método de acceso múltiple. Como métodos de acceso múltiple destacan:  el acceso múltiple por división de frecuencia o FDMA;  el acceso múltiple por división de tiempo o TDMA;  el acceso múltiple por división de código o CDMA. 3.4.1 Multiplexación Por División De Frecuencia (Esquema Analógico ) (FDM) La multiplexación por división en frecuencia es una técnica que consiste en dividir mediante filtros el espectro de frecuencias del canal de transmisión y desplazar la señal a transmitir dentro del margen del espectro correspondiente mediante modulaciones, de tal forma que cada usuario tiene posesión exclusiva de su banda de frecuencias (llamadas subcanales). En el extremo de la línea, el multiplexor encargado de recibir los datos realiza la demodulación la señal, obteniendo separadamente cada uno de los subcanales. Esta operación se realiza de manera transparente a los usuarios de la línea. Se emplea este tipo de multiplexación para usuarios telefónicos, radio, TV que requieren el uso continuo d Este proceso es posible cuando la anchura de banda del medio de transmisión excede de la anchura de banda de las señales a transmitir. Se pueden transmitir varias señales simultáneamente si cada una se modula con una portadora de frecuencia diferente, y las frecuencias de las portadoras están lo suficientemente separadas como para que no se produzcan interferencias. Cada subcanal se separa por unas bandas de guarda para prevenir posibles interferencias por solapamiento. La señal que se transmite a través del medio es analógica, aunque las señales de entrada pueden ser analógicas o digitales. En el primer caso se utilizan las modulaciones AM, FM y PM para producir una señal analógica centrada en la frecuencia deseada. En el caso de señales digitales se utilizan ASK, FSK, PSK y DPSK. En el extremo receptor, la señal compuesta se pasa a través de filtros, cada uno centrado en una de las diferentes portadoras. De este modo la señal se divide otra vez y cada componente se demodula para recuperar la señal. La técnica de MDF presenta cierto grado de normalización. Una norma de gran uso es la correspondiente a 12 canales de voz, cada uno de 4.000 Hz (3.100 para el usuario y el resto para la banda de guarda) multiplexado en la banda de 60-108 Khz. A esta unidad se le llama grupo. Muchos proveedores de servicios portadores ofrecen a sus clientes una línea alquilada de 48 a 56 Kbps, basada en un grupo. Se pueden multiplexar cinco grupos (60 canales de voz) para formar un supergrupo. La siguiente unidad es el grupo maestro, que está constituido por cinco supergrupos (de acuerdo con las normas del UIT) o por diez grupos (de acuerdo a Bell System). 3.4.2 Multiplexación Por División De Tiempo (Esquema Digital)(TDM Y STDM) La multiplexación por división de tiempo es una técnica para compartir un canal de transmisión entre varios usuarios. Consiste en asignar a cada usuario, durante unas determinadas "ranuras de tiempo", la totalidad del ancho de banda disponible. Esto se logra organizando el mensaje de salida en unidades de información llamadas tramas, y asignando intervalos de tiempo fijos dentro de la trama a cada canal de entrada. De esta forma, el primer canal de la trama corresponde a la primera comunicación, el segundo a la segunda, y así sucesivamente, hasta que el n-esimo más uno vuelva a corresponder a la primera. El uso de esta técnica es posible cuando la tasa de los datos del medio de transmisión excede de la tasa de las señales digitales a transmitir. El multiplexor por división en el tiempo muestrea, o explora, cíclicamente las señales de entrada (datos de entrada) de los diferentes usuarios, y transmite las tramas a través de una única línea de comunicación de alta velocidad. Los MDT son dispositivos de señal discreta y no pueden aceptar datos analógicos directamente, sino demodulados mediante un módem. Los MDT funcionan a nivel de bit o a nivel de carácter. En un MDT a nivel de bit, cada trama contiene un bit de cada dispositivo explorado. El MDT de caracteres manda un carácter en cada canal de la trama. El segundo es generalmente más eficiente, dado que requiere menos bits de control que un MDT de bit. La operación de muestreo debe ser lo suficientemente rápida, de forma que cada buffer sea vaciado antes de que lleguen nuevos datos. Los sistemas MIC, sistema de codificación digital, utilizan la técnica MDT para cubrir la capacidad de los medios de transmisión. La ley de formación de los sucesivos órdenes de multiplexación responde a normalizaciones de carácter internacional, con vista a facilitar las conexiones entre diversos países y la compatibilidad entre equipos procedentes de distintos fabricantes. El UIT/UIT recomienda, como primer escalón de la jerarquía de multiplexación por división en el tiempo, 24 ó 32 (30 + 2) canales telefónicos, sistemas utilizados en Estados Unidos y Japón el primero y en Europa, el segundo. Según la recomendación G-732 del UIT, el sistema MIC primario europeo multiplexa a nivel de muestra 30 canales de voz, además de un canal de alineación y otro de señalización, formando una trama de 256 bits (32 canales, una muestra por canal y 8 bits por muestra) a una frecuencia de 8 Khz (doble ancho de banda que el canal telefónico), de lo que resulta una velocidad de 2.048 Kbps En los equipos múltiplex MIC secundario, terciario, etc., se lleva a cabo una multiplexación en el tiempo (MDT) por entrelazado de impulsos (bit a bit) a diferencia de los equipos MIC primarios. El UIT ha recomendado cuatro jerarquías de multiplexación para equipos MIC. El equipo múltiplex digital que combina las señales de salida de cuatro equipos múltiplex primarios MIC se denomina equipo múltiplex digital de segundo orden. Los equipos múltiplex digitales de tercer orden combinarían las señales de salida de cuatro equipos múltiplex de segundo orden, etc. Así, el segundo nivel de multiplexación acepta cuatro señales digitales a 2.048 kbps para formar una señal a 8.448 Kbps El tercer nivel agrupa cuatro señales de 8.448 Kbps en una de 34.368 Kbps El cuarto nivel agrupa cuatro señales de nivel tres en una señal de 13.9264 Kbps Por último, en la misma proporción, el quinto nivel produce una señal de 565 Mbps 3.4.3 Multiplexación Por División De Código (CDM) «CDMA» redirige aquí. Para el organismo andaluz, véase Centro de Documentación Musical de Andalucía. La multiplexación por división de código, acceso múltiple por división de código o CDMA (del inglés Code Division Multiple Access) es un término genérico para varios métodos de multiplexación o control de acceso al medio basados en la tecnología de espectro expandido. La traducción del inglés spread spectrum se hace con distintos adjetivos según las fuentes; pueden emplearse indistintamente espectro ensanchado, expandido, difuso o disperso para referirse en todos los casos al mismo concepto. Habitualmente se emplea en comunicaciones inalámbricas (por radiofrecuencia), aunque también puede usarse en sistemas de fibra óptica o de cable. El término CDMA, sin embargo, suele utilizarse popularmente para referirse a una interfaz de aire inalámbrica de telefonía móvil desarrollada por la empresa Qualcomm, y aceptada posteriormente como estándar por la TIA norteamericana bajo el nombre IS-95 (o, según la marca registrada por Qualcomm, "cdmaONE" y su sucesora CDMA2000). En efecto, los sistemas desarrollados por Qualcomm emplean tecnología CDMA, pero no son los únicos en hacerlo. 3.4.4 Multiplexación Por Longitudes De Onda (WDM) En telecomunicación, la multiplexación por división de longitud de onda (WDM, del inglés Wavelength Division Multiplexing) es una tecnología que multiplexa varias señales sobre una sola fibra óptica mediante portadoras ópticas de diferente longitud de onda, usando luz procedente de un láser o un LED. Este término se refiere a una portadora óptica (descrita típicamente por su longitud de onda) mientras que la multiplexación por división de frecuencia generalmente se emplea para referirse a una portadora de radiofrecuencia (descrita habitualmente por su frecuencia). Sin embargo, puesto que la longitud de onda y la frecuencia son inversamente proporcionales, y la radiofrecuencia y la luz son ambas formas de radiación electromagnética, la distinción resulta un tanto arbitraria. El dispositivo que une las señales se conoce como multiplexor mientras que el que las separa es un demultiplexor. Con el tipo adecuado de fibra puede disponerse un dispositivo que realice ambas funciones a la vez, actuando como un multiplexor óptico de inserción-extracción. Los primeros sistemas WDM aparecieron en torno a 1985 y combinaban tan sólo dos señales. Los sistemas modernos pueden soportar hasta 160 señales y expandir un sistema de fibra de 10 Gb/s hasta una capacidad total 25,6 Tb/s sobre un solo par de fibra.

3.3 Dispositivos Para La Transmisión De Datos: El Modem

3.3 Dispositivos Para La Transmisión De Datos: El Modem Un módem es un dispositivo que se utiliza para transmitir información entre varios equipos (básicamente 2) a través de las líneas telefónicas. Los equipos operan en forma digital y utilizan el lenguaje binario (una serie de ceros y unos) pero los módems son analógicos. Las señales digitales pasan de un valor al otro. No existe un término o punto medio, es todo o nada, o sea, unos o ceros. Por el contrario, las señales analógicas no cambian "por escalón" sino que abarcan todos los valores, por lo que se puede obtener 0; 0,1; 0,2; 0,3; 1,0 y todos los valores en el medio. Por ejemplo, un piano funciona de manera digital porque no existen "escalones" entre las notas. En cambio, en un violín las notas pueden modularse para pasar por todas las frecuencias posibles. Un ordenador funciona como un piano, un módem como un violín. El módem convierte la información binaria del equipo en analógica. Luego envía este nuevo código a través de la línea telefónica. Pueden escucharse unos sonidos extraños si el volumen del módem está encendido. Entonces, el módem convierte la información digital en ondas analógicas y en la dirección contraria, transforma datos analógicos en digitales. Es por eso que la palabra módem surge del acrónimo de Modulador/Demodulador 3.3.1 Estándares Utilizados Por Los Modem Hay dos conjuntos de estándares de módems, los Bell americanos y los CCITT europeos. En el momento actual, los módems de estándar Bell no pueden ser utilizados legalmente en el Reino Unido, donde las frecuencias utilizadas no cumplen los requerimientos de la British Telcom. Para que los módems multi-estándar puedan ser aprobados, deben mortificarse para desactivar la operación Bell. El sistema Beli, por tanto, es de una importancia mera- mente académica para los usuarios europeos, y sólo será necesario conocerlos si se va a acceder, por alguna razón, a alguna base de datos americana. La tabla que sigue muestra las velocidades de transmisión y las frecuencias de modulación utilizadas por los sistemas Bell y CCM. Los dos sistemas Bell son similares a los dos sistema CCITT, pero en la práctica no son lo suficiente- mente iguales como para lograr la compatibilidad. Dado que los sistemas Bell no son generalmente aplicables en Europa, no serán considerados en este libro. El sistema V21 es probablemente el mejor para propósitos generales, ya que permite una razonable velocidad de transmisión en ambas direcciones. También permite que el equipo receptor devuelva los datos al equipo transmisor, ya que funciona en sistema full duplex. Esto permite implementar un sistema efectivo de control de errores. Por otra parte, el sistema V23 permite una considerable velocidad de transmisión, pero sólo en funcionamiento half duplex. Es interesante señalar que la operación half duplex, o semi dúplex, no significa que la comunicación sólo sea posible en un sentido (esto se conoce como simplex). Significa que el sistema puede emitir en una única dirección a la vez; utilizando protocolos convenientes, es posible transmitir en ambas direcciones. Es necesario un protocolo efectivo para evitar que los dos transmitan a la vez. El protocolo es igual que en los sistemas de radioteléfonos, donde la comunicación sólo se establece en un sentido a la vez y hay que utilizar la palabra “cambio” al final de cada mensaje para indicar a la otra persona que es su turno para hablar. En un sistema informática todo puede ser controlado automáticamente. Por tanto, el usuario no puede siquiera darse cuenta de que el sistema está funcionando en una única dirección cada vez. El sistema V23 tiene las velocidades de 1200175 baudios, mencionadas previamente. En principio, puede parecer un sistema extraño. Está diseñado básicamente para la utilización en grandes bases de datos. Estos sistemas, normalmente, emiten una gran cantidad de datos de la base al usuario, utilizando para ello la velocidad rápida. La velocidad lenta la utiliza el usuario para enviar instrucciones a la base de datos. Estas son normalmente muy cortas, por lo, que resulta suficiente una velocidad de tan sólo 75 baudios. Suele ser la velocidad en la que los usuarios teclean la que fija la velocidad a la cual son enviados los caracteres. Los 75 baudios representan un máximo de 7.5 caracteres por segundo, o 450 caracteres por minuto. Supone de 75 a 90 palabras por minuto, velocidad solamente alcanzable por muy buenos mecanógrafos. La figura 3 muestra la estructura interna utilizada por un módem V21. Un módem, funcionalmente hablando, es muy simple, pero hay que indicar que en la práctica resulta muy complejo y que hasta hace muy poco han sido extremadamente caros (más de 200.000 pesetas). Los módems modernos no son particularmente baratos en comparación con algunos de los ordenadores domésticos, pero resultan una buena inversión por su gran utilidad. Si observamos la figura 3 en la zona dedicada a la transmisión, vemos que la entrada en serie se acopla a un circuito generador de tonos. Este es normalmente un VCO (Voltage Controlled Oscillator, oscilador controlado por voltaje), que conmuta entre las frecuencias en respuesta a los cambios de voltaje en su entrada, generando directamente los dos tonos requeridos. En las unidades reales hay circuitos antes del generador de tonos para asegurarse que los voltajes de control recibidos están en el rango adecuado. Si esto no se hiciera los tonos serían dependientes exactamente de los voltajes de entrada del puerto serie, y podrían variar en un alto rango. Para que el módem funcione adecuadamente en conjunción con otros módems, resulta esencial la exactitud de los tonos generados. La segunda etapa consiste en un filtro paso banda. Este filtro permite sólo el paso a una estrecha banda de frecuencias y rechaza cualquier señal fuera de las frecuencias de la banda de paso. Existen dos razones principales para la inclusión de este filtro. Una es, simplemente, que el generador de tonos no puede producir señales sedales puras, si- no acompañadas de una gran cantidad de armónicos (múltiplos de la frecuencia fundamental). Estas frecuencias se hallan fuera de rango permitido para la transmisión vía teléfono. Una razón es que el proceso de modulación también genera frecuencias fuera del rango permitido, y el filtrado las elimina. El rango de frecuencias de paso depende de los tonos de la transmisión; el ancho de banda es ligeramente superior que el mínimo necesario para incluir los dos tonos. El filtro es habitualmente de buena calidad y da un alto grado de atenuación, incluso cerca de los márgenes del paso de banda. La figura 4 muestra una respuesta en frecuencias típica para unos tonos de 1180 y 980 Hz. El duplexador es un circuito que permite enviar una señal a través de un par de líneas mientras se extrae otra señal de ellas. Si la señal transmitida se alimentara directamente al cable cortocircuitaría las señales que llegaran y las eliminaría. Este permite acoplar la transmisión a la línea sin atenuar seriamente la señal de llegada. Las señales transmitida y recibida deben ser de niveles comparables. Si se utiliza acoplamiento acústico el duplexador no resulta necesario, ya que el teléfono en sí más el acoplador producen la duplexación. Si no se utiliza el acoplamiento acústico las conexiones al sistema telefónico se harán utilizando un transformador de aislamiento. En la sección receptora, se extrae la señal del duplexador y se alimenta a un filtro paso banda. Este resulta necesario para atenuar la sección transmisora propia, aislando los dos tonos diferentes emitidos por el módem situado en el otro extremo de la línea. También ayuda a evitar los problemas causados por el ruido de la línea telefónica. Hay que señalar lo curioso que resulta que, a pesar del gran ruido contenido en las líneas telefónicas, los errores de transmisor. Son muy pocos cuando los módems están bien instalados. El decodificador de tonos tiene que convertir los tonos que llegan de nuevo a voltajes. Suele hacer falta también una serie de circuitos para proporcionar una salida compatible RS-232C, que es más sencillo que diseñar un circuito que los genere directamente. Se pueden utilizar diversos tipos de circuitos de codificadores de tono, pero el más utilizado es sin duda el PLL, (Phase Locked Loop, bucle de bloqueo de fases). Este sistema utiliza la estructura del diagrama de bloques de la figura 5. La señal de entrada y la salida de un VCO se alimentan a las dos entradas de un comparador de fase, y la salida de ésta se procesa a través de un filtro paso bajo. La salida del comparador de fase es una serie de pulsos, que se convierte en un voltaje continuo cuando se la hace pasar por el filtro paso bajo. La amplitud, dll voltaje continuo es relativa a la fase y la frecuencia de las dos señales de entrada. Si la salida del VCO es dé una frecuencia menor o su fase se halla desplazada por detrás de la señal de entrada, el voltaje alcanza un valor alto. Si el VCO está operando a una frecuencia mayor que la señal de entrada o su fase se encuentra ligeramente por delante, entonces el voltaje torna un valor bajo. La salida del filtro paso bajo se utiliza como voltaje de control para el VCO y un sencillo proceso de ‘’retroalimentación hace que el VCO bloquee su frecuencia a la misma que la señal de entrada. Si por cualquier razón el VCO produjera una frecuencia superior que la frecuencia de entrada, entonces el voltaje de control se reduciría, contrarrestando la deriva y bloqueando de nuevo al VCO en la misma frecuencia. De más importancia, si la frecuencia de entrada cambia, entonces también funciona el mismo sistema de retroalimentación y hace que el VCO persiga a la frecuencia de la señal de entrada. Nuestro circuito no requiere una señal del oscilador, sino la salida del filtro paso bajo.

3.2 Transmisión De Datos

3.2 Transmisión De Datos Una transmisión dada en un canal de comunicaciones entre dos equipos puede ocurrir de diferentes maneras. La transmisión está caracterizada por: • la dirección de los intercambios • el modo de transmisión: el número de bits enviados simultáneamente • la sincronización entre el transmisor y el receptor 3.2.1 Modos De Transmisión: Simplex, Half-Duplex, Full Dúplex La transmisión simplex (sx) o unidireccional es aquella que ocurre en una dirección solamente, deshabilitando al receptor de responder al transmisor. Normalmente la transmisión simplex no se utiliza donde se requiere interacción humano-máquina. Ejemplos de transmisión simplex son: La radiodifusión (broadcast) de TV y radio, el paging unidireccional, etc. La transmisión half-duplex (hdx) permite transmitir en ambas direcciones; sin embargo, la transmisión puede ocurrir solamente en una dirección a la vez. Tanto transmisor y receptor comparten una sola frecuencia. Un ejemplo típico de half-duplex es el radio de banda civil (CB) donde el operador puede transmitir o recibir, no pero puede realizar ambas funciones simultáneamente por el mismo canal. Cuando el operador ha completado la transmisión, la otra parte debe ser avisada que puede empezar a transmitir (e.g. diciendo "cambio"). La transmisión full-duplex (fdx) permite transmitir en ambas dirección, pero simultáneamente por el mismo canal. Existen dos frecuencias una para transmitir y otra para recibir. Ejemplos de este tipo abundan en el terreno de las telecomunicaciones, el caso más típico es la telefonía, donde el transmisor y el receptor se comunican simultáneamente utilizando el mismo canal, pero usando dos frecuencias. 3.2.2 Tipos De Transmisión: Transmisión Serie, Transmisión Paralela Serie En este caso los n bits que componen un mensaje se transmiten uno detrás de otro por la misma línea. A la salida de una maquina los datos en paralelo se convierten los datos en serie, los mismos se transmiten y luego en el receptor tiene lugar el proceso inverso, volviéndose a obtener los datos en paralelo. La secuencia de bits transmitidos es por orden de peso creciente y generalmente el último bit es de paridad. In aspecto fundamental de la transmisión serie es el sincronismo, entendiéndose como tal al procedimiento mediante el cual transmisor y receptor reconocen los ceros y unos de los bits de igual forma. El sincronismo puede tenerse a nivel de bit, de byte o de bloque, donde en cada caso se identifica el inicio y finalización de los mismos. Paralelo Todos los bits se transmiten simultáneamente, existiendo luego un tiempo antes de la transmisión del siguiente boque. Este tipo de transmisión tiene lugar en el interior de una maquina o entre maquinas cuando la distancia es muy corta. La principal ventaja de esto modo de transmitir datos es la velocidad de transmisión y la mayor desventaja es el costo. También puede llegar a considerarse una transmisión en paralelo, aunque se realice sobre una sola línea, al caso de multiplexación de datos, donde los diferentes datos se encuentran intercalados durante la transmisión. 3.2.3 Técnicas De Transmisión: Transmisión Síncrona Y Asíncrona SÍNCRONA La transmisión de datos síncrona involucra una continua y consistente (en tiempo) transferencia de datos. La duración del tiempo entre cada bit ó carácter mandado es preasignado por el sistema receptor y el transmisor. Esto provee un medio para el sistema de recepción para conocer cuando buscar cada carácter ó bien que tanto tiempo tomará transmitir un carácter. Los módems que pueden ser sincronizados de esta manera son llamados módems síncronos. Dependiendo del protocolo usado, el tiempo de sincronización es usualmente afectado por una especial señal de información que preceda a una transferencia de datos o por información contenida en un grupo de bytes (llamados BLOQUES). Esta señal habilita los sistemas para sincronizar sus relojes internos y puede venir de la computadora o el módem. ASÍNCRONA La transmisión asíncrona es un modo de transferencia de datos que notifica al sistema de recepción, cuando cada carácter empieza y termina, acompañado con bits adicionales. Esos extra bits incluyen un bit de empiezo, bit de paridad y un bit de paro. A estos bits junto con el carácter se les conoce como TRAMA. Los módems que operan en modo asíncrono son llamados módems asíncronos. La transmisión síncrona es 20 por ciento más rápida que la asíncrona. Pero la transmisión síncrona requiere de equipo más caro. Mientras tanto el equipo asíncrono no requiere de circuitos de reloj, razón por la cual los módems asíncronos son más baratos. Razón por la cual la mayoría de la microcomputadoras que usan módems usan este tipo de transmisión. 3.2.4 Tipos De Conexión: Punto A Punto Y Multipunto La distribución geográfica de dispositivos terminales y la distancia entre cada dispositivo y el dispositivo al que se transmite son parámetros importantes que deben ser considerados cuando se desarrolla la configuración de una red. Los dos tipos de conexiones utilizados en redes son punto a punto y multipunto. Las líneas de conexión que solo conectan dos puntos son punto a punto. Cuando dos o más localidades terminales comparten porciones de una línea común, la línea es multipunto. Aunque no es posible que dos dispositivos en una de estas líneas transmita al mismo tiempo, dos o más dispositivos pueden recibir un mensaje al mismo tiempo. En algunos sistemas una dirección de difusión (broadcast) permite a todos los dispositivos conectados a la misma línea multipunto recibir un mensaje al mismo tiempo. Cuando se emplean líneas multipunto, se pueden reducir los costos globales puesto que porciones comunes de la línea son compartidos para uso de todos los dispositivos conectados a la línea. Para prevenir que los datos transmitidos de un dispositivo interfieran con los datos transmitidos por otro, se debe establecer una disciplina o control sobre el enlace. Cuando se diseña un red local de datos se pueden mezclar tanto líneas punto a punto como multipunto, y la transmisión se puede efectuar en modo simplex, half-duplex o full-duplex.

3.1 Tipos De Velocidades

3.1 Tipos De Velocidades 3.1.1 Velocidades De Transmisión (BPS) La velocidad de transmisión de datos se mide en bits por segundo (bits per seconds, bps).Las menciones de bauds o tasa de bauds son incorrectas, El baud es una unidad variable de transmisión de datos y la "rapidez en bauds" es la velocidad a la cual viaja un pulso. La velocidad de transmisión a menudo se llama "rapidez en bits", pero ya que un pulso puede representar varios bits a la vez, a velocidades mayores que 1.200 bps, la rapidez de bits generalmente excede a la rapidez en bauds. Bits por segundo (BPS). Es el número efectivo de bits/seg que se transmiten en una línea por segundo. Un módem de 600 baudios puede transmitir a 1200, 2400 o, incluso a 9600 BPS. Los aparatos de módem que se comercializan actualmente se diferencian notablemente entre sí en cuanto al tipo (internos o externos) y sobre todo, en cuanto al índice de velocidad de transmisión de datos que pueden alcanzar. Aunque las velocidades de transmisión son frecuentemente expresadas en baudios (el número de cambios de frecuencia en un segundo), ese término ya no se utiliza y en su lugar se utiliza otro más exacto: bits por segundo (bps). 3.1.2 Velocidad De Modulación Para estudiar la velocidad de transmisión de datos por un canal, vamos a suponer que esta transmisión se realiza a través de algún tipo de cable eléctrico, aunque todos los conceptos que se verán a continuación pueden extenderse a cualquier medio físico. La información puede ser transmitida por un cable variando alguna propiedad de la corriente eléctrica que circula por él, por ejemplo su voltaje. Nuestro propósito es transmitir información digital, por lo tanto nos interesa poder representar los estados lógicos 0 y 1 de una forma sencilla y fácilmente reconocible. Un convenio podría ser emplear un nivel de tensión de 0 voltios para representar el estado lógico 0, y 5 voltios para representar el estado lógico 1. Se considera estados significativos de una línea a todos aquellos niveles de tensión que representen información distinta. Si disponemos de dos niveles de tensión para representar la información, entonces sólo podremos señalizar un bit en cada estado. Si en lugar de dos, utilizáramos cuatro niveles de tensión, podemos agrupar la información a transmitir de modo que cada nivel de tensión represente dos bits. En este caso se pueden transmitir dos bits de información por cada intervalo significativo de tiempo. Podemos definir la velocidad de modulación como el número de veces por segundo que la señal cambia su valor en la línea o medio de transmisión. Esta velocidad se mide en baudios. El número de baudios determina la cantidad de cambios de estado por segundo que se producen en una transmisión. Cuantos más estados, más cantidad de bits por segundo se podrán transmitir. La expresión matemática que define la velocidad de modulación vendría dada por: Como hemos visto, un cambio de estado puede implicar la transmisión de más de un bit de información. Por lo tanto, el concepto de baudio está ligado directamente a las características del medio de transmisión y se corresponde con la cantidad de veces que la señal portadora oscila (cambia de estado) por unidad de tiempo. Definiremos ahora la velocidad de transmisión como el número de bits transmitidos por segundo. Su unidad es el bps (bits por segundo). En general, si el número de estados posibles de la línea de comunicación es n, a cada estado le corresponderán log2 n bits de información, por lo tanto la velocidad de transmisión será: Solo en el caso de tener dos estados significativos (n=2), el número de baudios coincidirá con la cantidad de bits por segundo que se pueden transmitir por la línea En la transmisión de información digital entre computadoras es fundamental que aseguremos intercambios de datos libres de errores. El coste de esto estriba en que a la propia información a transmitir se le deben añadir otras informaciones adicionales para detección/corrección de errores, para establecer y controlar la comunicación, etc. Aparece aquí un nuevo concepto de velocidad que llamaremos velocidad de transferencia de datos, y que representa la cantidad de información útil que puede transmitirse por unidad de tiempo: En conclusión, la velocidad de transmisión es simplemente el número de bits transmitidos por segundo cuando se envía un flujo continuo de datos. Existen unas velocidades estándar de transmisión que son 75, 150, 300, 600, 1200, 1800, 2400, 4800, 9600 y 19200. La mayoría de los módems transmiten y reciben a 300 baudios, o transmiten a 75 y reciben a 1200 baudios. El baudio es la velocidad de transmisión y es equivalente a un bit por segundo. Las velocidades de transmisión altas no son útiles en sistemas telefónicos. Para producir una transmisión 'de datos con éxito, es esencial que los equipos transmisores trabajen a la misma velocidad.

Uidad 3Técnicas de transmisión, multiplexación y conmutación

Uidad 3Técnicas de transmisión, multiplexación y conmutación

2.5 Técnicas De Modulación Digital.

2.5 Técnicas De Modulación Digital. Las señales (bits) son generadas por un dispositivo de procesamiento de datos (digital), y es transportado por un camino originalmente analógico. Para esto se necesita técnicas que permitan transmitir señales sin que se pierda su integridad. Para cumplir esto se necesita agregar a los dispositivos de procesamiento de datos equipos especialmente elaborados para MODULAR y DEMODULAR, como los MODEM. Una señal (bit) puede ser enviada de dos formas: digital y analógica. Las técnicas empleadas para transportar información son: 1.- MODULACIÓN: Técnica empleada para modificar una señal con la finalidad de posibilitar el transporte de informaciones a través de un canal de comunicación y recuperar la señal en su forma original en la otra extremidad. Ahora serán posibles dos técnicas para la transmisión de datos: Analógica y Digital. Solamente la Analógica realiza modulación. Una vez que la Digital usa un recurso de codificación de pulsos. 2.- BITS Y BAUDIOS: La Tasa de modulación representa la cantidad de veces que la línea fue señalizada y es expresada en Baudios. Tasa de Modulación = 1/d d = duración del elemento básico de la señal Una tasa de transmisión es dada por el número de bits por segundo que pueden ser transmitidos. Tomándose en cuenta que la línea puede asumir n estados diferentes, se puede transmitir k bits por estado, tal que: 2 k =n k = log2 n Tasa de Transmisión = k * Tasa de modulación 3.- MODULACION DIGITAL: Los Módems digitales no ejecutan exactamente una modulación, sino una especie de codificación de una señal que difiere mucho en relación a una señal analógica generada por los Módems analógicos. 3.1 Técnicas de Modulación Digital: Los códigos básicos son: Código RZ Código NRZ Código BIO El resto de códigos son derivación de algunos de estos, así tenemos: Códigos: NRZ-L; BIO-L NRZ-M; BIO-M NRZ-SBIO-S RZ AMI 4.- MODULACION ANALOGICA: Una señal digital generada por el equipo de procesamiento de datos es inserida en la onda portadora generada por el modem, siendo que las características originales de la onda padrón son modificadas de acuerdo a la técnica de modulación utilizada por el modem y esta transporta los datos hasta la otra extremidad del enlace donde otro modem demodulará la señal y la entregará a un equipo de procesamiento de datos en su forma original. 4.1 Técnicas de Modulación Analógica: Son las siguientes: ASK (Amplitud Shift - Keying) FSK (Frecuency Shift - Keying) PSK (Phase Shift - Keying) 4.1.1 Modulación ASK : La amplitud de la onda es alterada de acuerdo con la variación de la señal de información. Exige un medio en que la respuesta de amplitud sea estable, ya que este tipo de modulación es bastante sensible a ruidos y distorsiones. 4.1.2 Modulación FSK: Consiste en un procedimiento de 2 osciladores con Frecuencias Diferentes para dígitos 0 y 1. Normalmente es usada para transmisión de datos en bajas velocidades y puede ser: Coherente: Donde no ocurre variación de fase de la portadora para dígitos del mismo valor. No Coherente: Donde puede ocurrir variación de fase de la portadora para dígitos del mismo valor. 4.1.3 Modulación PSK: Consiste en un procedimiento de la onda portadora en función de un bit de dato (0, 1). Un bit 0 corresponde a la fase 0; en cuanto al bit 1, corresponde a la fase g. Por tanto, este ángulo está asociado con un dato al ser transmitido y con una técnica de codificación usada para representar un bit. 4.1.4 Modulación DPSK: Variación de la modulación PSK, que tiene como característica un procedimiento de la fase de acuerdo con un dígito a ser transmitido. 4.1.5 Modulación QAM: Es caracterizada por la superposición de 2 portadoras en cuadratura moduladas en amplitud. Con eso al colocar 4 bits dentro de un tronco de señal y operar con tasas de 2400 bauds, se alcanza tasas de 9600 bps.

2.4.3 Codificación Amplitud: AMI, B8ZS y HDB3.

2.4.3 Codificación Amplitud: AMI, B8ZS y HDB3. Codificación digital bipolar Utiliza tres valores positivos, negativo y cero. El nivel de voltaje cero se utiliza para representar un bit 0. Los bits 1 se codifican como valores positivo y negativo en forma alterna. Si el primer 1 se representa por una amplitud positiva, el segundo se representa por una amplitud negativa, el tercero positiva, etc. Siempre se produce una alternancia entre los valores de amplitud para representar los bits 1, aunque estos bits no sean consecutivos. Hay 3 tipos de codificación Bipolar: AMI ("Alternate Mark Inversión") Los bits 1 se codifican con la polaridad inversa a la del anterior 1 codificado, el bit 0 con cero voltios. B8ZS y HDB3 son dos variaciones de la AMI que sustituyen las secuencias largas de ceros, evitando tensiones constantes durante largo tiempo. B8ZS (Bipolar 8-Zero Substitution) La 8-cera o Substitución bipolar Cuando aparecen 8 ‘0’ consecutivos, B8ZS introduce cambios artificiales (violaciones y transiciones de polaridad) en el patrón basado en la polaridad del último bit '1' codificado: V: Violación, mantiene la polaridad anterior en la secuencia. B: Transición, invierte la polaridad anterior en la secuencia. Los ocho ceros se sustituyen por la secuencia: 000V B0VB Utilizada en América del Norte.