Tecnologico De Estudiso Superiores De Ecatepec

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC

Misión:


“Ofrecer educación superior integral y de calidad a través de programas de docencia, investigación y extensión un Modelo Académico Educativo basado en valores y en desarrollo de competencias programas acreditados, procesos y egresados certificados, para satisfacer las necesidades de los sectores, con el objeto de contribuir al desarrollo de la región, del estado y del país”.

Visión:

“El Tecnológico de Estudios Superiores de Ecatepec se concibe como la institución de educación superior de mayo nivel vanguardista, con prestigio nacional e internacional, competitiva en docencia, investigación, extensión y funciones de apoyo, con resultados de excelencia para los sectores que atiende. Nuestros egresados se forman con valores y competencias, obteniendo así calidad y competitividad que les permitan incorporarse al mundo laboral para beneficio propio, de la organización y de la sociedad, pero sobre todo, contribuyendo eficientemente en la solución de problemas, la sustentabilidad y los avances tecnológicos.”


Informate más acerca de la institucion y de lo que puede ofrecerte en:
http://www.tese.edu.mx

TESE

TESE
Logo del Tecnologico De Estudios Superiores De Ecatepec

Carrera de Sistemas


Ingenieria en Sistemas Computacionales ISC

Objetivos:


Formar profesionistas de manera integral con capacidad analítica, crítica, creativa y de liderazgo que aporten soluciones computacionales en las organizaciones, aplicando las tecnologías de la información y de las comunicaciones, comprometidos con su entorno.

Perfil del Egresado:

El egresado de la Ingeniería en Sistemas Computacionales tendrá los conocimientos teórico-prácticos necesarios para que de manera eficiente y responsable pueda analizar, diseñar, desarrollar e implantar software de base y de aplicación, sistemas operativos y proponer la óptima utilización de las diferentes estructuras de bases de datos. Será capaz de evaluar, instalar, administrar, operar y mantener redes y sistemas distribuidos, así como sistemas de transmisión de datos y equipo de comunicación digital.El egresado de esta carrera contará con habilidades técnicas y metodológicas de investigación que le permitan integrarse con facilidad en grupos interdisciplinarios de desarrollo tecnológico y empresarial. Tendrá una sólida formación profesional que de manera visionaria, ética e innovadora, ayude al fortalecimiento de la tecnología nacional, desarrollando un compromiso con la sociedad y la ecología.

Campo Laboral:

El Ingeniero en Sistemas Computacionales egresado del TESE, no sólo desempeña actividades donde el uso de las computadoras es indispensable, sino además puede participar en grupos de investigación y desarrollo en diversas disciplinas. Estará capacitado para ejercer su profesión en cualquier organización productiva de bienes y servicios, tanto del sector privado o público, o en forma independiente.Dada su especialidad, el Ingiero en Sistemas Computacionales estará en condiciones de ejercer en las áreas de administración, desarrollo y mantenimiento de sistemas, ocupar puestos directivos o ejecutivos en empresas del sector, y participar en docencia e investigación.

Conoce más acerca de ISC en:
http://portal.tese.edu.mx/tese2010/loader.aspx?n=W9DVO61VVB

viernes, 6 de julio de 2012

4.1 Medios Guiados.

4.1 Medios Guiados. El medio de transmisión constituye el canal que permite la transmisión de información entre dos terminales en un sistema de transmisión. Las transmisiones se realizan habitualmente empleando ondas electromagnéticas que se propagan a través del canal 1. A veces el canal es un medio físico y otras veces no, ya que las ondas electromagnéticas son susceptibles de ser transmitidas por el vacío. Los medios de transmisión guiados están constituidos por un cable que se encarga de la conducción (o guiado) de las señales desde un extremo al otro. Las principales características de los medios guiados son el tipo de conductor utilizado, la velocidad máxima de transmisión, las distancias máximas que puede ofrecer entre repetidores, la inmunidad frente a interferencias electromagnéticas, la facilidad de instalación y la capacidad de soportar diferentes tecnologías de nivel de enlace. La velocidad de transmisión depende directamente de la distancia entre los terminales, y de si el medio se utiliza para realizar un enlace punto a punto o un enlace multipunto. Debido a esto los diferentes medios de transmisión tendrán diferentes velocidades de conexión que se adaptarán a utilizaciones dispares 4.1.1 Cable De Par Trenzado (Señal Eléctrica). El cable de par trenzado es un medio de conexión usado en telecomunicaciones en el que dos conductores eléctricos aislados son entrelazados para anular las interferencias de fuentes externas y diafonía de los cables adyacentes. Fue inventado por Alexander Graham Bell. El entrelazado de los cables disminuye la interferencia debido a que el área de bucle entre los cables, la cual determina el acoplamiento eléctrico en la señal, se ve aumentada. En la operación de balanceado de pares, los dos cables suelen llevar señales paralelas y adyacentes (modo diferencial), las cuales son combinadas mediante sustracción en el destino. La tasa de trenzado, usualmente definida en vueltas por kilómetro, forma parte de las especificaciones de un tipo concreto de cable. Cuanto mayor es el número de vueltas, menor es la atenuación de la diafonía. Donde los pares no están trenzados, como en la mayoría de las conexiones telefónicas residenciales, un miembro del par puede estar más cercano a la fuente que el otro y, por tanto, expuesto a niveles ligeramente distintos de interferencias electromagnéticas. Tipos de cable de para trenzado: Unshielded twisted pair o par trenzado sin blindaje: son cables de pares trenzados sin blindar que se utilizan para diferentes tecnologías de redes locales. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal. Shielded twisted pair o par trenzado blindado: se trata de cables de cobre aislados dentro de una cubierta protectora, con un número específico de trenzas por pie. STP se refiere a la cantidad de aislamiento alrededor de un conjunto de cables y, por lo tanto, a su inmunidad al ruido. Se utiliza en redes de ordenadores como Ethernet o Token Ring. Es más caro que la versión sin blindaje. Foiled twisted pair o par trenzado con blindaje global: son unos cables de pares que poseen una pantalla conductora global en forma trenzada. Mejora la protección frente a interferencias y su impedancia es de 12 ohmios. Está limitado en distancia, ancho de banda y tasa de datos. También destacar que la atenuación es una función fuertemente dependiente de la frecuencia. La interferencia y el ruido externo también son factores importantes, por eso se utilizan coberturas externas y el trenzado. Para señales analógicas se requieren amplificadores cada 5 o 6 kilómetros, para señales digitales cada 2 ó 3. En transmisiones de señales analógicas punto a punto, el ancho de banda puede llegar hasta 250 kHz. En transmisión de señales digitales a larga distancia, el data rate no es demasiado grande, no es muy efectivo para estas aplicaciones. En redes locales que soportan ordenadores locales, el data rate puede llegar a 10 Mbps (Ethernet) y 100 Mbps (Fast-Ethernet). En el cable par trenzado de cuatro pares, normalmente solo se utilizan dos pares de conductores, uno para recibir (cables 3 y 6) y otro para transmitir (cables 1 y 2), aunque no se pueden hacer las dos cosas a la vez, teniendo una trasmisión half-dúplex. Si se utilizan los cuatro pares de conductores la transmisión es full-dúplex. Ventajas: Bajo costo en su contratación. Alto número de estaciones de trabajo por segmento. Facilidad para el rendimiento y la solución de problemas. Puede estar previamente cableado en un lugar o en cualquier parte. Desventajas: Altas tasas de error a altas velocidades. Ancho de banda limitado. Baja inmunidad al ruido. Baja inmunidad al efecto crosstalk (diafonía) Alto costo de los equipos. Distancia limitada (100 metros por segmento). 4.1.2 Cable Coaxial (Señal Eléctrica). El cable coaxial fue creado en la década de los 30, y es un cable utilizado para transportar señales eléctricas de alta frecuencia que posee dos conductores concéntricos, uno central, llamado vivo, encargado de llevar la información, y uno exterior, de aspecto tubular, llamado malla o blindaje, que sirve como referencia de tierra y retorno de las corrientes. Entre ambos se encuentra una capa aislante llamada dieléctrico, de cuyas características dependerá principalmente la calidad del cable. Todo el conjunto suele estar protegido por una cubierta aislante. El conductor central puede estar constituido por un alambre sólido o por varios hilos retorcidos de cobre; mientras que el exterior puede ser una malla trenzada, una lámina enrollada o un tubo corrugado de cobre o aluminio. En este último caso resultará un cable semirrígido. Debido a la necesidad de manejar frecuencias cada vez más altas y a la digitalización de las transmisiones, en años recientes se ha sustituido paulatinamente el uso del cable coaxial por el de fibra óptica, en particular para distancias superiores a varios kilómetros, porque el ancho de banda de esta última es muy superior. Cable coaxial RG-59. A: Cubierta protectora de plástico B: Malla de cobre C: Aislante D: Núcleo de cobre La construcción de cables coaxiales varía mucho. La elección del diseño afecta al tamaño, flexibilidad y el cable pierde propiedades. Un cable coaxial consta de un núcleo de hilo de cobre rodeado por un aislante, un apantallamiento de metal trenzado y una cubierta externa. El apantallamiento tiene que ver con el trenzado o malla de metal (u otro material) que rodea los cables. El apantallamiento protege los datos que se transmiten, absorbiendo el ruido, de forma que no pasa por el cable y no existe distorsión de datos. Al cable que contiene una lámina aislante y una capa de apantallamiento de metal trenzado se le llama cable apantallado doble. Para grandes interferencias, existe el apantallamiento cuádruple. Este apantallamiento consiste en dos láminas aislantes, y dos capas de apantallamiento de metal trenzado. El núcleo de un cable coaxial transporta señales electrónicas que forman la información. Este núcleo puede ser sólido (normalmente de cobre) o de hilos. Rodeando al núcleo existe una capa aislante dieléctrica que la separa de la malla de hilo. La malla de hilo trenzada actúa como masa, y protege al núcleo del ruido eléctrico y de la distorsión que proviene de los hilos adyacentes. El núcleo y la malla deben estar separados uno del otro. Si llegaran a tocarse, se produciría un cortocircuito, y el ruido o las señales que se encuentren perdidas en la malla, atravesarían el hilo de cobre. Un cortocircuito ocurre cuando dos hilos o un hilo y una tierra se ponen en contacto. Este contacto causa un flujo directo de corriente (o datos) en un camino no deseado. En el caso de una instalación eléctrica común, un cortocircuito causará el chispazo y el fundido del fusible o del interruptor automático. Con dispositivos electrónicos que utilizan bajos voltajes, el efecto es menor, y casi no se detecta. Estos cortocircuitos de bajo voltaje causan un fallo en el dispositivo y lo normal es que se pierdan los datos que se estaban transfiriendo. Una cubierta exterior no conductora (normalmente hecha de goma, teflón o plástico) rodea todo el cable, para evitar las posibles descargas eléctricas. El cable coaxial es más resistente a interferencias y atenuación que el cable de par trenzado, por esto hubo un tiempo que fue el más usado. La malla de hilos absorbe las señales electrónicas perdidas, de forma que no afecten a los datos que se envían a través del cable interno. Por esta razón, el cable coaxial es una buena opción para grandes distancias y para soportar de forma fiable grandes cantidades de datos con un sistema sencillo. Se puede encontrar un cable coaxial: • entre la antena y el televisor; • en las redes urbanas de televisión por cable (CATV) e Internet; • entre un emisor y su antena de emisión (equipos de radioaficionados); • en las líneas de distribución de señal de vídeo (se suele usar el RG-59); • en las redes de transmisión de datos como Ethernet en sus antiguas versiones 10BASE2 y 10BASE5; en las redes telefónicas interurbanas y en los cables submarinos. Antes de la utilización masiva de la fibra óptica en las redes de telecomunicaciones, tanto terrestres como submarinas, el cable coaxial era ampliamente utilizado en sistemas de transmisión de telefonía analógica basados en la multiplexación por división de frecuencia (FDM), donde se alcanzaban capacidades de transmisión de más de 10.000 circuitos de voz. Asimismo, en sistemas de transmisión digital, basados en la multiplexación por división de tiempo (TDM), se conseguía la transmisión de más de 7.000 canales de 64 Kbps El cable utilizado para estos fines de transmisión a larga distancia necesitaba tener una estructura diferente al utilizado en aplicaciones de redes LAN, ya que, debido a que se instalaba enterrado, tenía que estar protegido contra esfuerzos de tracción y presión, por lo que normalmente aparte de los aislantes correspondientes llevaba un armado exterior de acero. 4.1.3 Fibra Óptica (Señal Luminosa). La fibra óptica es un medio de transmisión empleado habitualmente en redes de datos; un hilo muy fino de material transparente, vidrio o materiales plásticos, por el que se envían pulsos de luz que representan los datos a transmitir. El haz de luz queda completamente confinado y se propaga por el interior de la fibra con un ángulo de reflexión por encima del ángulo límite de reflexión total, en función de la ley de Snell. La fuente de luz puede ser láser o un LED. Las fibras se utilizan ampliamente en telecomunicaciones, ya que permiten enviar gran cantidad de datos a una gran distancia, con velocidades similares a las de radio y superiores a las de cable convencional. Son el medio de transmisión por excelencia al ser inmune a las interferencias electromagnéticas, también se utilizan para redes locales, en donde se necesite aprovechar las ventajas de la fibra óptica sobre otros medios de transmisión. La fibra óptica es una guía de ondas dieléctrica que opera a frecuencias ópticas. Núcleo y revestimiento de la fibra óptica. Cada filamento consta de un núcleo central de plástico o cristal (óxido de silicio y germanio) con un alto índice de refracción, rodeado de una capa de un material similar con un índice de refracción ligeramente menor. Cuando la luz llega a una superficie que limita con un índice de refracción menor, se refleja en gran parte, cuanto mayor sea la diferencia de índices y mayor el ángulo de incidencia, se habla entonces de reflexión interna total. En el interior de una fibra óptica, la luz se va reflejando contra las paredes en ángulos muy abiertos, de tal forma que prácticamente avanza por su centro. De este modo, se pueden guiar las señales luminosas sin pérdidas por largas distancias. A lo largo de toda la creación y desarrollo de la fibra óptica, algunas de sus características han ido cambiando para mejorarla. Las características más destacables de la fibra óptica en la actualidad son: Cobertura más resistente: La cubierta contiene un 25% más material que las cubiertas convencionales. Uso dual (interior y exterior): La resistencia al agua y emisiones ultravioleta, la cubierta resistente y el funcionamiento ambiental extendido de la fibra óptica contribuyen a una mayor confiabilidad durante el tiempo de vida de la fibra. Mayor protección en lugares húmedos: Se combate la intrusión de la humedad en el interior de la fibra con múltiples capas de protección alrededor de ésta, lo que proporciona a la fibra, una mayor vida útil y confiabilidad en lugares húmedos. Empaquetado de alta densidad: Con el máximo número de fibras en el menor diámetro posible se consigue una más rápida y más fácil instalación, donde el cable debe enfrentar dobleces agudos y espacios estrechos. Se ha llegado a conseguir un cable con 72 fibras de construcción súper densa cuyo diámetro es un 50% menor al de los cables convencionales. Funcionamiento Los principios básicos de su funcionamiento se justifican aplicando las leyes de la óptica geométrica, principalmente, la ley de la refracción (principio de reflexión interna total) y la ley de Snell. Su funcionamiento se basa en transmitir por el núcleo de la fibra un haz de luz, tal que este no atraviese el revestimiento, sino que se refleje y se siga propagando. Esto se consigue si el índice de refracción del núcleo es mayor al índice de refracción del revestimiento, y también si el ángulo de incidencia es superior al ángulo límite. Ventajas • Una banda de paso muy ancha, lo que permite flujos muy elevados (del orden del GHz). • Pequeño tamaño, por lo tanto ocupa poco espacio. • Gran flexibilidad, el radio de curvatura puede ser inferior a 1 cm, lo que facilita la instalación enormemente. • Gran ligereza, el peso es del orden de algunos gramos por kilómetro, lo que resulta unas nueve veces menos que el de un cable convencional. • Inmunidad total a las perturbaciones de origen electromagnético, lo que implica una calidad de transmisión muy buena, ya que la señal es inmune a las tormentas, chisporroteo... • Gran seguridad: la intrusión en una fibra óptica es fácilmente detectable por el debilitamiento de la energía luminosa en recepción, además, no radia nada, lo que es particularmente interesante para aplicaciones que requieren alto nivel de confidencialidad. • No produce interferencias. • Insensibilidad a los parásitos, lo que es una propiedad principalmente utilizada en los medios industriales fuertemente perturbados (por ejemplo, en los túneles del metro). Esta propiedad también permite la coexistencia por los mismos conductos de cables ópticos no metálicos con los cables de energía eléctrica. • Atenuación muy pequeña independiente de la frecuencia, lo que permite salvar distancias importantes sin elementos activos intermedios. Puede proporcionar comunicaciones hasta los 70 km. antes de que sea necesario regenerar la señal, además, puede extenderse a 150 km. utilizando amplificadores láser. • Gran resistencia mecánica (resistencia a la tracción, lo que facilita la instalación). • Resistencia al calor, frío, corrosión. • Facilidad para localizar los cortes gracias a un proceso basado en la telemetría, lo que permite detectar rápidamente el lugar y posterior reparación de la avería, simplificando la labor de mantenimiento. • Con un coste menor respecto al cobre. Desventajas A pesar de las ventajas antes enumeradas, la fibra óptica presenta una serie de desventajas frente a otros medios de transmisión, siendo las más relevantes las siguientes: • La alta fragilidad de las fibras. • Necesidad de usar transmisores y receptores más caros. • Los empalmes entre fibras son difíciles de realizar, especialmente en el campo, lo que dificulta las reparaciones en caso de ruptura del cable. No puede transmitir electricidad para alimentar repetidores intermedios. • La necesidad de efectuar, en muchos casos, procesos de conversión eléctrica-óptica. • La fibra óptica convencional no puede transmitir potencias elevadas.2 • No existen memorias ópticas. La fibra óptica no transmite energía eléctrica, esto limita su aplicación donde el terminal de recepción debe ser energizado desde una línea eléctrica. La energía debe proveerse por conductores separados. Las moléculas de hidrógeno pueden difundirse en las fibras de silicio y producir cambios en la atenuación. El agua corroe la superficie del vidrio y resulta ser el mecanismo más importante para el envejecimiento de la fibra óptica. Incipiente normativa internacional sobre algunos aspectos referentes a los parámetros de los componentes, calidad de la transmisión y pruebas.

No hay comentarios:

Publicar un comentario